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Abstract

Thermocapillary forces in slender films can trigger an instability resembling lenslet arrays. Here

we predict subsequent evolution of stable yet dynamic conical shapes by a self-reinforcement mech-

anism that drives the liquid tip toward a virtual cusp singularity. While cusps are known to form

in systems governed by normal forces, this work reveals how a surface shear singularity acts to self-

organize fluid into a self-similar conical form. The evolution process suggests a novel method for

non-contact fabrication of conical microarrays for micro-optical, superhydrophobic or biomimetic

applications.
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Astonishing singularities resembling line and point cusps are known to form in liquid

systems. A recent delightful book by J. Eggers [1] (and many pertinent references therein)

describes the complex dynamics of cusp formation leading to the breakup of a liquid thread,

the Rayleigh–Taylor instability in Hele–Shaw cells and slender films undergoing rupture as

sketched in Fig. 1(a) and (b) where a repulsive van der Waals force cause dewetting [2, 3].

Bernoff, Bertozzi and Witelski [4] have provided an elegant comprehensive framework for

analyzing such singularities in slender shear-free films. Inspired by their work, we report here

how similar cusps are also possible in films exposed to an applied surface shear. Fig.1 (c)

and (d) depicts how a liquid film self-organizes into a dynamic cuspidal shape in response to

large thermocapillary forces. (While cusps have been examined in one other system subject

to surface shear [5, 6], the formation process was not addressed and remains an unsolved

problem.)

Microarrays consisting of solid conical structures would make possible truly unique sub-

strates for applications ranging from micro-optical beam shaping to biomimetic design of

superhydrophobic, self-cleaning surfaces mimicking a cicada’s wing, as shown in Fig. 2.

This concept can become a reality by exploiting recent advances in one-step, non-contact

fabrication of 3D protrusion arrays triggered by electrohydrodynamic [8] or thermocapil-

lary instabilities [9]. Here we examine for the first time the intermediate dynamics of the

latter case in which initially rounded lenslets transform into stable, conical shapes by a self-

reinforcement mechanism that drives the tip shape toward a virtual cusp singularity. The

(a)

(b)

(c)

(d)

FIG. 1. (Color online) (a) Line and (b) point rupture of a thin dewetting film. (Courtesy Ref. [7]).

(c) Line and (d) point cusp formation in response to large thermocapillary forces.
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FIG. 2. (Color online) (a) Resting cicada. (b) AFM image of a superhydrophobic, self-cleaning

conical array on a cicada wing. Courtesy Ref. [10].

relevant geometry is sketched in Fig. 3 where two parallel substrates held at a constant

temperature difference ∆T = Thot − Tcold > 0 and in close proximity (d is typically a few

microns or less) confine a slender fluid bilayer (air and liquid). The ratio (ho/λmax)
2 ≪ 1)

such that the thermal flux is dominated by vertical conduction where λmax is the wavelength

of the fastest growing, linearly unstable mode [11, 12]. Fluctuations along the free surface

experience large thermocapillary stresses due to the small ratio of air to liquid thermal

conductivity 0 < κ < 1. The non-dimensional evolution equation is

∂Ĥ

∂T̂
+∇‖ ·

{
Ĥ3

3Ca
∇3

‖Ĥ +
κD̂MaĤ2

2
[
D̂ + (κ− 1)Ĥ

]2∇‖Ĥ

}
= 0 (1)

where ∇‖ denotes the in-plane gradient operator. Vertical dimensions are scaled by ho and

lateral ones by λmax such that Ẑ = z/ho, Ĥ = h(x, t)/ho, D̂ = do/ho and X̂ = x/λmax.

Time is likewise normalized as T̂ = uct/λmax where uc is a characteristic thermocapil-

lary flow speed. These scalings give rise to two dimensionless numbers Ca = ηuc/γǫ
3

and Ma = ǫγT∆T/ηuc, where η, γ and γT = |dγ/dT | denote the liquid film viscos-

ity, surface tension and thermocapillary coefficient evaluated at Thot, respectively. Fur-

ther details about this model can be found in Refs. [11 and 12] where it is shown that

λmax = 2πho[4γho/(3κdoγT∆T )]1/2[(do/ho) + κ − 1]. Eq. (1) contains a virtual singularity

at Ĥ = D̂v ≡ D̂/(1 − κ) which, since κ < 1, is located in the unphysical domain beyond

the top substrate, indicated by the dashed line in Fig. 3. This singularity reflects the plane

where the surface shear diverges to infinity.

We now recast Eq.(1) into parameter free form

∂H

∂T
+∇‖ ·

[
H3∇3

‖H +
H2

(1−H)2
∇‖H

]
= 0 (2)
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FIG. 3. (Color online) Geometry depicting linear instability of a slender liquid film driven by large

thermocapillary forces induced by thermal conduction across a slender air gap.

by rescaling H = Ĥ/Hc where Hc = D̂/(1 − κ), X = X̂/Xc (or R = R̂/Rc), T = T̂ /Tc,

Xc = (2D̂D̂v/3κMaCa)1/2 and Tc = 4D̂2/(3κ2D̂vMa
2
Ca). The lateral gradient ∇‖ is

similarly rescaled by Xc. The top substrate is then located at H = 1−κ and the singularity

at H = 1. We begin by proving that for H > 0, Eq. (2) admits no stable stationary

states on a periodic or infinite domain by considering the Cahn-Hilliard (C-H) form [13],

∂H/∂T = ∇‖ · [M(H)∇‖(δF/δH)] where the Lyapunov free energy functional F is given by

F[H ] =

∫

Ω

(
1

2

∣∣∇‖H
∣∣2 + U(H)

)
dΩ , (3)

the mobility coefficient M(H) = H3, δF/δH = −∇2
‖H + dU/dH , and the driving potential

U(H) = H ln[(1 − H)/H ]. In contrast to conventional C-H systems described by a double

well potential, here U(H) exhibits no global minimum and diverges atH = 1, as does dU/dH

and d4U/dH4, as shown in Fig. 4. For periodic domains Ω, it can be shown that dF/dT ≤

0. (For infinite domains, the proof requires that the integrand in F[H ] be augmented by

U [H(X → ∞, T )].) Stationary states Hs with constant volume V =
∫
Ω
H(X, T ) dΩ can

be found by identifying the extrema of F[H, p] subject to constraint through a Lagrange

multiplier p:

F[H, p] =

∫

Ω

(∣∣∇‖H
∣∣2

2
+ U(H)

)
dΩ− p

(∫

Ω

H dΩ− V

)
. (4)

Stationary solutions must exhibit a vanishing first variation in the free energy δF|Hs
= 0

for arbitrarily small perturbations δH , which leads to a relation for the effective interfacial

pressure

p =

[
−∇2

‖H +
dU

dH

]

H=Hs

. (5)

It has been shown that for a generalized class of thin films equations [14] which includes

forms like Eq. (2), there exist perturbations to stationary states of the form Hs + ǫδH with
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FIG. 4. (Color online) Plots of U(H), 0.2dU/dH and 0.005d4U/dH4 for the thermocapillary

equation. (Magnitudes were adjusted to accommodate the curves on a common scale.)

δH ∝ ∂2Hs/∂X
2 and ǫ ≪ 1, which lead to a negative second variation

δ2F|H=Hs
=

∫

Ω

(
|∇‖δH|2 +

d2U

dH2

∣∣∣∣
Hs

δH2

)
dΩ < 0 (6)

whenever (d4U/dH4)H∈Hs
< 0.

This implies there always exist nearby states with lower free energy. Since d4U/dH4 in

Fig. 4 is everywhere negative, there are therefore no energetically stable stationary states

for the thermocapillary system described by Eq. (2).

To gain further insight, we solved [15] Eq. (2) for planar and axisymmetric systems

by splitting the form into two coupled second order equations. A mixed Lagrange finite

element method was used and no flux conditions applied to the lateral domain sidewalls.

The initial condition for planar flow was chosen to be H(X, 0) = (1 + 0.1 cosKmaxX) /3 on

the interval [0, π/Kmax] for Kmax = 2π/λmax. The computational domain contained about

20,000 elements (4×10−8 minimum size) with quadratic shape functions to ensure sufficient

resolution of the emerging cusp. The smallest mesh size ∆ ≪ (∇2
‖H)−1 allowed this region

to be tiled by at least ten elements. Time integration relied on a second order backward

difference scheme with sufficiently small adaptive time steps enforced via tight tolerances.

Evolution to cuspidal shapes required about 11,000 integration steps and were terminated

when 1−Hapex < 2×10−6. Axisymmetric simulations were similarly treated. The numerical

results shown in Fig. 5(a) reveal the (rapid) evolution of cuspidal shapes for planar (left)

and axisymmetric (right) flow.

Fig. 5(b) reveals power law behavior indicative of self-similarity in the apical region where
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FIG. 5. (Color online) (a) Cusp interface shapes for Hapex = 0.367, 0.4, 0.5, . . . , 0.9, 0.999998. Inset:

Magnified view for Hapex > 0.9 in intervals of 0.01. (b) Log-log plots of dH/dT |apex and ∇2
‖H|apex

versus 1 − Hapex. Slopes and intercept values (in parentheses) computed from least squared fits

over shaded region. (c) Self-similar profiles of 1−Hapex = 0.2, 0.2/2, . . . , 0.2/210. Arrows indicate

increasing time. Inset: Rescaled apical curvature.

(dH/dT )apex ∼ (1−Hapex)
−3 and (∇2

‖Hapex) ∼ (1−Hapex)
−1. These exponents extend more

than five decades in time and suggest two local scaling balances, namely (1−Hapex)/(Tc −

T ) ∼ (1−Hapex)
−3 and (1−Hapex)/X

2 ∼ (1−Hapex)
−1, where Tc denotes the blowup time

when Hapex = 1. These relations indicate X ∼ T 1/4 ∼ (1 − Hapex). Although the model

given by Eq. (2) is no longer valid beyond H = 1− κ, the virtual cusp singularity at H = 1
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acts as an attractor to self-focus the fluid into a conical shape whose apical radius shrinks

toward a point. These scalings are also evident from expansion of Eq. (2) about the singular

value H = 1:
∂H

∂T
+∇‖ ·

[
∇‖∇

2
‖H +

∇‖H

(1−H)2

]
+O(1−H)−1 = 0 . (7)

We examine 1D (X) and 2D axisymmetric flow (R) by introducing the self-similar vari-

ables

τ = (Tc − T )
1

4 , η =
(X,R)

τ
, 1−H =

∞∑

n=1

τnwn(η) . (8)

Were the original governing equation exactly scale invariant as in other thin film systems,

the series expansion in Eq. (8) would terminate exactly with the n = 1 term. The 1 − H

term in the denominator of Eq. (2) precludes such simplification. We propose the series

expansions

∂H

∂T
=

∞∑

n=1

τn−4Tn(w1, . . . , wn) (9)

∇d ·
(
H3∇d∇d

2H
)
=

∞∑

n=1

τn−4Sn(w1, . . . , wn) (10)

∇d ·

[
H2∇dH

(1−H)2

]
=

∞∑

n=1

τn−4Mn(w1, . . . , wn) , (11)

where ∇d ≡ êX ∂/∂X or êR ∂/∂R and êi denote unit vectors. To leading order n = 1, Eq.

(2) reduces to the nonlinear, fourth order form

T1(w1) + S1(w1) +M1(w1) = 0 , (12)

T1(w1) =
1

4

(
w1 − η

dw1

dη

)
(13)

S1(w1) = −∇4
ηw1 and M1(w1) = ∇2

η

(
1

w1

)
. (14)

where the operator subscripts denote differentiation with respect to η. (The n ≥ 2 equations

containing w1 are linear.) Since solutions to Eq.(12) require symmetry about the origin,

dw1/dη|η=0 = 0 and d3w1/dη
3|η=0 = 0. For the boundary conditions as η → ∞, we enforce

the asymptotic behavior of the numerical solutions showing a stationary shape with fixed

slope. The condition (∂H/∂T )|η→∞ → 0 yields the Robin condition T1(w1)|η→∞ → 0. To

leading order, the asymptotic solution to Eq.(12) is satisfied by the Laurent series

w∞
1 =

∞∑

n=1

anη
5−4n = a1η +O(η−3) as |η| → ∞ . (15)
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While the actual values of the asymptotic slope a1 > 0 must be computed numerically,

the functional convergence to w∞
1 can be seen by linearizing Eq. (12) such that w1(η →

∞) = w∞
1 (η) + f(η). This yields the non-homogeneous linear equation T1(f) + S1(f) −

∇2
η(f/(w

∞
1 )2) = 0 which in the limit |a1| ≪ 1 leads to a singular perturbation problem with

an inner boundary region influenced by the fourth order capillary term (not shown). We

focus instead on global solutions of the linearized equation using a WKBJ approximation

where f(ǫη) = exp
[
ǫ−4/3

∑∞
n=0 ǫ

4n/3Sn(ǫη)
]
for ǫ ≪ 1. Matching terms of order ǫ−4/3 and ǫ0

and solving the resulting two ordinary equations yields the general solution

f ∼ β0η +
3∑

n=1

βn

ηγ
exp

[
−

3

44/3
e

2πi

3
nη

4

3

]
+ . . . (16)

with γ = 1 and 5/3 for the rectilinear or axisymmetric case, respectively. Since the first

two terms in the summation undergo diverging oscillatory behavior, β1 = β2 must vanish.

The two non-vanishing terms preceded by β0 and β3 reflect an infinitesimal shift to the far

field slope and a rapidly decaying function. Were the analytic solution to Eq. (12) known

in the vicinity of the origin, the coefficients β0 and β3 would be obtained by asymptotic

matching. Absent that approach, the solutions to Eq. (12) are still constrained by the

symmetry condition at the origin, which yields solutions only for discrete values of the far

field slope, as computed next.

The numerical solutions [15] to Eq.(12) were computed on a finite domain 0 ≤ η ≤ L

subject to the boundary conditions described at η = 0 (symmetry) and L (Robin). Mesh

refinement and finite size studies were conducted to assure convergent solutions. Shown in

Fig. 6 are the first six similarity solutions with key limiting values listed in Table I. The

asymptotic slopes for the rectilinear solutions are larger than those for the axisymmetric ones

and tend to cause stronger oscillations in the near field, which for axisymmetric geometry

are relatively suppressed by the additional capillary pressure gradient stemming from the

radial curvature.

Next we compare the values of the linear fitting coefficients obtained from the self-similar

analysis leading to Eq.(12) with those values obtained from direct simulations of Eq. (2)

shown in Fig. 5. It can be shown that to leading order w1, the linear intercept value

for dHapex/dT is log10

[(
w

(p)
1 (0)

)4
/4
]
and for (∇2

‖H)apex is log10

[
w

(p)
1 (0)∇2

‖w
(p)
1 (0)

]
where

1−Hapex ≈ τw
(p)
1 (0). Substitution of the p = 1 values in Table I into these relations yields

intercept values for dHapex/dT equal to -1.632 for the rectilinear case and -1.681 for the
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FIG. 6. (Color online) Leading order self-similar solutions w
(p)
1 to Eq.(12). Only first six convergent

solutions shown.

axisymmetric case. The corresponding values for (∇2
‖H)apex are -0.175 and -0.078. These

values are in excellent agreement with the intercept values shown in Fig. 5(b). Likewise,

the slope values lim
η→∞

dw
(1)
1 /dη for the leading solutions in Table I show excellent agree-

ment when superposed on the collapsed profiles shown in Fig. 5(c). When converted to

dimensional form, the asymptotic slope of the virtual cuspidal shape is given by the re-

lation lim
η→∞

dw
(1)
1 /dη × (γT∆T/γ)1/2[3κ/2(1 − κ)]1/2. We next show that the mode w

(1)
1 is

TABLE I. Computed values of the asymptotic interface slope, amplitude and curvature at the

origin for the first p = 1−6 similarity solutions to Eq.(12) to leading order w1 for rectilinear (blue)

and axisymmetric (red) geometry.

p lim
η→∞

dw
(p)
1 /dη w

(p)
1 (0) ∇2

ηw
(p)
1 (0)

1 1.0437 0.7639 0.5526 0.5372 1.2082 1.5563

2 0.3430 0.2474 0.6728 0.7317 -0.2316 -0.1624

3 0.2145 0.1610 0.4204 0.4816 0.2021 0.1669

4 0.1580 0.1196 0.4052 0.4544 -0.0884 -0.0438

5 0.1257 0.0962 0.3390 0.3902 0.0792 0.0526

6 0.1046 0.0806 0.3211 0.3649 -0.0364 -0.0087

self-selected over all other modes w
(p≥2)
1 . Linear stability analysis of Eq. (7) is non-trivial

since the self-similar base states evolve on multiple time scales {τn}∞n=1. However, since the

late stage dynamics of Eq. (8) is dominated by w
(p)
1 , it suffices to consider infinitesimal
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perturbations which scale as w
(p)
1 :

1−H = τw
(p)
1 (η) + ǫ τ 1−4λ

∞∑

m=0

eimθφm(η) (17)

where θ denotes the polar coordinate in cylindrical geometry and φm(η) the corresponding

perturbation. The corresponding eigenvalue equation is given by

T1(φm) + S1(φm) + δM1(φm) = λφm, (18)

with δM1 = −∇2
‖

[
φm/(w

(p)
1 )2

]
. (Note that the gradients in Eq. (12) must now include

the θ terms.) For localized perturbations that preserve constant slope in the far field,

T1(φm) = λφm as η → ∞. Furthermore, since Eq. (7) is both space and time translationally

invariant, there exist two trivial solutions as well, namely cos θ × dw
(p)
1 /dη with eigenvalue

1/4, and (w
(p)
1 − ηdw

(p)
1 /dη)/4 with eigenvalue 1. The eigenvalue spectrum for the first

p = 1 − 6 self-similar base states of Eq. (12) is plotted in Fig. 7. There are 2p eigenvalues

for each solution w
(p)
1 ; however, the fundamental solution w

(1)
1 is the only solution with no

positive eigenvalues aside from those two reflecting time and space invariance. The cusp

formation process is therefore dominated by self-selection of the w
(1)
1 state.

Rectilinear

Axisymmetric (m = 0)

Dipolar (m = 1)

1.00

10.0

0.25

w1
(1) w1

(2) w1
(3) w1

(4) w1
(5) w1

(6)

FIG. 7. Eigenvalue spectrum for Eq. (18) for perturbations to the first p = 1− 6 self-similar base

states of Eq. (12) for rectilinear, axisymmetric and dipolar type modes.

In conclusion, we have identified a thin film system driven by surface shear where con-

ical formations evolve by a self-reinforcing, self-similar mechanism. Rounded protrusions

get rapidly drawn toward a virtual attractor resembling a line or point cusp. Aside from

fundamental importance, this dynamical system offers a novel method for fabrication of

unusual microarrays, whose shapes are much more difficult, costly and even impossible to

manufacture by any other lithographic technique.
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