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Abstract
Thermocapillary forces in slender films can trigger an instability resembling lenslet arrays. Here
we predict subsequent evolution of stable yet dynamic conical shapes by a self-reinforcement mech-
anism that drives the liquid tip toward a virtual cusp singularity. While cusps are known to form
in systems governed by normal forces, this work reveals how a surface shear singularity acts to self-
organize fluid into a self-similar conical form. The evolution process suggests a novel method for
non-contact fabrication of conical microarrays for micro-optical, superhydrophobic or biomimetic

applications.



Astonishing singularities resembling line and point cusps are known to form in liquid
systems. A recent delightful book by J. Eggers [1] (and many pertinent references therein)
describes the complex dynamics of cusp formation leading to the breakup of a liquid thread,
the Rayleigh—Taylor instability in Hele-Shaw cells and slender films undergoing rupture as
sketched in Fig. 1(a) and (b) where a repulsive van der Waals force cause dewetting [2, 3].
Bernoff, Bertozzi and Witelski [4] have provided an elegant comprehensive framework for
analyzing such singularities in slender shear-free films. Inspired by their work, we report here
how similar cusps are also possible in films exposed to an applied surface shear. Fig.1 (c)
and (d) depicts how a liquid film self-organizes into a dynamic cuspidal shape in response to
large thermocapillary forces. (While cusps have been examined in one other system subject
to surface shear [5, 6], the formation process was not addressed and remains an unsolved

problem.)

Microarrays consisting of solid conical structures would make possible truly unique sub-
strates for applications ranging from micro-optical beam shaping to biomimetic design of
superhydrophobic, self-cleaning surfaces mimicking a cicada’s wing, as shown in Fig. 2.
This concept can become a reality by exploiting recent advances in one-step, non-contact
fabrication of 3D protrusion arrays triggered by electrohydrodynamic [8] or thermocapil-
lary instabilities [9]. Here we examine for the first time the intermediate dynamics of the
latter case in which initially rounded lenslets transform into stable, conical shapes by a self-

reinforcement mechanism that drives the tip shape toward a virtual cusp singularity. The

FIG. 1. (Color online) (a) Line and (b) point rupture of a thin dewetting film. (Courtesy Ref. [7]).

(c) Line and (d) point cusp formation in response to large thermocapillary forces.



FIG. 2. (Color online) (a) Resting cicada. (b) AFM image of a superhydrophobic, self-cleaning

conical array on a cicada wing. Courtesy Ref. [10].

relevant geometry is sketched in Fig. 3 where two parallel substrates held at a constant
temperature difference AT = Tjot — Teola > 0 and in close proximity (d is typically a few
microns or less) confine a slender fluid bilayer (air and liquid). The ratio (h,/Amax)® < 1)
such that the thermal flux is dominated by vertical conduction where A, is the wavelength
of the fastest growing, linearly unstable mode [11, 12]. Fluctuations along the free surface
experience large thermocapillary stresses due to the small ratio of air to liquid thermal

conductivity 0 < k < 1. The non-dimensional evolution equation is
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where V| denotes the in-plane gradient operator. Vertical dimensions are scaled by h, and
lateral ones by An.x such that 7 = 2/ ho, H = h(x,t)/h,, D = d,/h, and X = X/ Amax-
Time is likewise normalized as 7 = Uet/Amax Where u, is a characteristic thermocapil-
lary flow speed. These scalings give rise to two dimensionless numbers Ca = nu,/ve®
and Ma = eyrAT/nu., where 1, v and ~p = |dvy/dT| denote the liquid film viscos-
ity, surface tension and thermocapillary coefficient evaluated at Tj., respectively. Fur-
ther details about this model can be found in Refs. [11 and 12] where it is shown that
Amax = 27ho[47vho/ (3kdyyr AT)|Y?[(dy/ho) + K — 1]. Eq. (1) contains a virtual singularity
at H = ﬁv = ﬁ/ (1 — k) which, since k < 1, is located in the unphysical domain beyond
the top substrate, indicated by the dashed line in Fig. 3. This singularity reflects the plane
where the surface shear diverges to infinity.

We now recast Eq.(1) into parameter free form
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FIG. 3. (Color online) Geometry depicting linear instability of a slender liquid film driven by large

thermocapillary forces induced by thermal conduction across a slender air gap.

by rescaling H = H/H, where H, = D/(1 — k), X = X/X, (or R = R/R.), T = T/T.,
X, = (2DD,/3xMaCa)*/? and T, = 4D?/(3x2D,Ma" Ca). The lateral gradient V| is
similarly rescaled by X.. The top substrate is then located at H = 1 — x and the singularity
at H = 1. We begin by proving that for H > 0, Eq. (2) admits no stable stationary
states on a periodic or infinite domain by considering the Cahn-Hilliard (C-H) form [13],
OH/OT =V - [M(H)V(6§/0H)] where the Lyapunov free energy functional § is given by

st = [ (5 it + vt an. G

the mobility coefficient M(H) = H?, §F/0H = —VﬁH + dU/dH, and the driving potential
U(H) = Hn[(1 — H)/H]. In contrast to conventional C-H systems described by a double
well potential, here U(H ) exhibits no global minimum and diverges at H = 1, as does dU/dH
and d*U/dH?*, as shown in Fig. 4. For periodic domains €2, it can be shown that dF/dT <
0. (For infinite domains, the proof requires that the integrand in §[H] be augmented by
U[H(X — 00,T)].) Stationary states H, with constant volume V' = [, H(X,T)dQ can
be found by identifying the extrema of §[H,p| subject to constraint through a Lagrange

S[H,p]zL(MjLU(H)) dQ—p(/QHdQ—V). (@)

Stationary solutions must exhibit a vanishing first variation in the free energy 0§

multiplier p:

H, =0
for arbitrarily small perturbations ¢ H, which leads to a relation for the effective interfacial

pressure

dUu
p=|-ViH+ —] : (5)
[ : dH | y_p,

It has been shown that for a generalized class of thin films equations [14] which includes

forms like Eq. (2), there exist perturbations to stationary states of the form H, + ed H with
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FIG. 4. (Color online) Plots of U(H), 0.2dU/dH and 0.005d*U/dH* for the thermocapillary

equation. (Magnitudes were adjusted to accommodate the curves on a common scale.)

OH oc *H,/0X? and € < 1, which lead to a negative second variation

U
2 . 2
0°F|r=m, —/Q(|V||5H| + o

whenever (d*'U/dH")pgen, < 0.

(5H2) dQ < 0 (6)
Hs

This implies there always exist nearby states with lower free energy. Since d*U/dH* in
Fig. 4 is everywhere negative, there are therefore no energetically stable stationary states
for the thermocapillary system described by Eq. (2).

To gain further insight, we solved [15] Eq. (2) for planar and axisymmetric systems
by splitting the form into two coupled second order equations. A mixed Lagrange finite
element method was used and no flux conditions applied to the lateral domain sidewalls.
The initial condition for planar flow was chosen to be H(X,0) = (1 + 0.1 cos K,.xX ) /3 on
the interval [0, 7/ Kpax] for Kpax = 27/ Amax. The computational domain contained about
20,000 elements (4 x 10~® minimum size) with quadratic shape functions to ensure sufficient
resolution of the emerging cusp. The smallest mesh size A < (Vﬁ )~! allowed this region
to be tiled by at least ten elements. Time integration relied on a second order backward
difference scheme with sufficiently small adaptive time steps enforced via tight tolerances.
Evolution to cuspidal shapes required about 11,000 integration steps and were terminated
when 1 — Hypex < 2% 1075, Axisymmetric simulations were similarly treated. The numerical
results shown in Fig. 5(a) reveal the (rapid) evolution of cuspidal shapes for planar (left)
and axisymmetric (right) flow.

Fig. 5(b) reveals power law behavior indicative of self-similarity in the apical region where
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FIG. 5. (Color online) (a) Cusp interface shapes for Hypex = 0.367,0.4,0.5,...,0.9,0.999998. Inset:
Magnified view for H,pex > 0.9 in intervals of 0.01. (b) Log-log plots of dH /dT |,pex and VﬁH |apex
versus 1 — Hypex. Slopes and intercept values (in parentheses) computed from least squared fits
over shaded region. (c) Self-similar profiles of 1 — Hapex = 0.2,0.2/2, ..., 0.2/2'9. Arrows indicate

increasing time. Inset: Rescaled apical curvature.

(dH /AT ) apex ~ (1 — Hapex) > and (VﬁHapeX) ~ (1 = Hapex) ' These exponents extend more
than five decades in time and suggest two local scaling balances, namely (1 — Hpex) /(7% —
T) ~ (1 = Hapex) > and (1 — Hapex)/X? ~ (1 = Hapex) ™', where T, denotes the blowup time
when H,,., = 1. These relations indicate X ~ TV* ~ (1 — H,p). Although the model
given by Eq. (2) is no longer valid beyond H = 1 — &, the virtual cusp singularity at H = 1
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acts as an attractor to self-focus the fluid into a conical shape whose apical radius shrinks
toward a point. These scalings are also evident from expansion of Eq. (2) about the singular

value H = 1:

0H 5 vV H o
o : Hy 1= 1-H)'=0.
T + V- |V ViH + - H) + O( ) 0 (7)
We examine 1D (X) and 2D axisymmetric flow (R) by introducing the self-similar vari-
ables
1 (X,R) -
— (T, —T)i, n= C1—H=Y w(y) .
r=@ -t g= >l )

Were the original governing equation exactly scale invariant as in other thin film systems,
the series expansion in Eq. (8) would terminate exactly with the n = 1 term. The 1 — H

term in the denominator of Eq. (2) precludes such simplification. We propose the series

expansions

OH <~ .4
a7 = 321 " T (we, . wy) 9)

3 2 _ N n—4
Vd' (H VdVd H) = E T Sn(wl,...,wn) (10)

n=1

H>V ,H N
| = E n 11
Vd |:(1 _ H)2:| n:17— Mn(wb >wn) ) ( )

where V, = éx 0/0X or égr 0/OR and &; denote unit vectors. To leading order n = 1, Eq.

(2) reduces to the nonlinear, fourth order form

Ti(w1) + Si(wq) + Mq(wi) =0, (12)
it = (- (13
81(’(1]1) = —Véwl and ./\/ll(wl) = V% <wil) . (14)

where the operator subscripts denote differentiation with respect to n. (The n > 2 equations
containing w; are linear.) Since solutions to Eq.(12) require symmetry about the origin,
dwy /dnly—o = 0 and d*w; /dn?|,—o = 0. For the boundary conditions as n — oo, we enforce
the asymptotic behavior of the numerical solutions showing a stationary shape with fixed
slope. The condition (0H/0T)|,—o — 0 yields the Robin condition 7;(w1)|;—e — 0. To
leading order, the asymptotic solution to Eq.(12) is satisfied by the Laurent series

w® = Zann5_4" =an+0n? as|p —oo. (15)
n=1
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While the actual values of the asymptotic slope a; > 0 must be computed numerically,
the functional convergence to w$° can be seen by linearizing Eq. (12) such that w;(n —
o0) = w°(n) + f(n). This yields the non-homogeneous linear equation 77(f) + Si(f) —
V2(f/(ws®)?) = 0 which in the limit [a;| < 1 leads to a singular perturbation problem with
an inner boundary region influenced by the fourth order capillary term (not shown). We
focus instead on global solutions of the linearized equation using a WKBJ approximation
where f(en) = exp [e /33> €'/35,(en)] for € < 1. Matching terms of order e~*/* and ¢

and solving the resulting two ordinary equations yields the general solution

3

f~ Bon+ ; % exp {—44—?)/3@%"17% +... (16)
with v = 1 and 5/3 for the rectilinear or axisymmetric case, respectively. Since the first
two terms in the summation undergo diverging oscillatory behavior, $; = [ must vanish.
The two non-vanishing terms preceded by [y and (5 reflect an infinitesimal shift to the far
field slope and a rapidly decaying function. Were the analytic solution to Eq. (12) known
in the vicinity of the origin, the coefficients §y and (3 would be obtained by asymptotic
matching. Absent that approach, the solutions to Eq. (12) are still constrained by the
symmetry condition at the origin, which yields solutions only for discrete values of the far
field slope, as computed next.

The numerical solutions [15] to Eq.(12) were computed on a finite domain 0 < n < L
subject to the boundary conditions described at n = 0 (symmetry) and L (Robin). Mesh
refinement and finite size studies were conducted to assure convergent solutions. Shown in
Fig. 6 are the first six similarity solutions with key limiting values listed in Table I. The
asymptotic slopes for the rectilinear solutions are larger than those for the axisymmetric ones
and tend to cause stronger oscillations in the near field, which for axisymmetric geometry
are relatively suppressed by the additional capillary pressure gradient stemming from the
radial curvature.

Next we compare the values of the linear fitting coefficients obtained from the self-similar
analysis leading to Eq.(12) with those values obtained from direct simulations of Eq. (2)
shown in Fig. 5. It can be shown that to leading order w;, the linear intercept value
for dHapex/dT is logy, [(wgp)(O))‘l/él} and for (ViH )apex is logy, [wip’(o)vﬁwip’(o)] where
1 — Hapex & ngp )(0). Substitution of the p = 1 values in Table I into these relations yields

intercept values for dH,pex/dT equal to -1.632 for the rectilinear case and -1.681 for the
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FIG. 6. (Color online) Leading order self-similar solutions wgp ) to Eq.(12). Only first six convergent

solutions shown.

axisymmetric case. The corresponding values for (VﬁH Japex are -0.175 and -0.078. These
values are in excellent agreement with the intercept values shown in Fig. 5(b). Likewise,
the slope values lgglo dw§1) /dn for the leading solutions in Table I show excellent agree-
ment when super;osed on the collapsed profiles shown in Fig. 5(c). When converted to
dimensional form, the asymptotic slope of the virtual cuspidal shape is given by the re-

lation lim dw!” /dn x (vrAT/v)Y2[3k/2(1 — k)]V/2.  We next show that the mode w!" is
n—00

TABLE I. Computed values of the asymptotic interface slope, amplitude and curvature at the
origin for the first p = 1 — 6 similarity solutions to Eq.(12) to leading order w; for rectilinear (blue)
and axisymmetric (red) geometry.

p o Jmdw/dy  w(0) V3w’ (0)

1 1.0437 0.7639  0.5526 0.5372 1.2082 1.5563
0.3430 0.2474  0.6728 0.7317 -0.2316 -0.1624
0.2145 0.1610  0.4204 0.4816 0.2021 0.1669
0.1580 0.1196  0.4052 0.4544  -0.0884 -0.0438
0.1257 0.0962  0.3390 0.3902 0.0792  0.0526

[ N 2 N \V)

0.1046 0.0806  0.3211 0.3649 -0.0364 -0.0087

2)

self-selected over all other modes wgp =) Linear stability analysis of Eq. (7) is non-trivial

since the self-similar base states evolve on multiple time scales {7} ,. However, since the

)

late stage dynamics of Eq. (8) is dominated by w§p , it suffices to consider infinitesimal
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perturbations which scale as wgp ),

L= H =7u”(n) +er' ™ e™6,(n) (17)
m=0

where 6 denotes the polar coordinate in cylindrical geometry and ¢,,(n) the corresponding

perturbation. The corresponding eigenvalue equation is given by

71(¢m) + & (¢m) + 5M1(¢m) = AP, (18>

with OM,; = —V} [¢m/(w§p’)2}. (Note that the gradients in Eq. (12) must now include
the 6 terms.) For localized perturbations that preserve constant slope in the far field,
Ti(dm) = Aoy, as n — oo. Furthermore, since Eq. (7) is both space and time translationally
invariant, there exist two trivial solutions as well, namely cosf x dw%p ) /dn with eigenvalue
1/4, and (w%p ) — ndw? ) /dn)/4 with eigenvalue 1. The eigenvalue spectrum for the first
p = 1 — 6 self-similar base states of Eq. (12) is plotted in Fig. 7. There are 2p eigenvalues
for each solution wgp ); however, the fundamental solution wgl) is the only solution with no
positive eigenvalues aside from those two reflecting time and space invariance. The cusp

1)

formation process is therefore dominated by self-selection of the w§ state.
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FIG. 7. Eigenvalue spectrum for Eq. (18) for perturbations to the first p = 1 — 6 self-similar base

states of Eq. (12) for rectilinear, axisymmetric and dipolar type modes.

In conclusion, we have identified a thin film system driven by surface shear where con-
ical formations evolve by a self-reinforcing, self-similar mechanism. Rounded protrusions
get rapidly drawn toward a virtual attractor resembling a line or point cusp. Aside from
fundamental importance, this dynamical system offers a novel method for fabrication of
unusual microarrays, whose shapes are much more difficult, costly and even impossible to

manufacture by any other lithographic technique.
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