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As known from thermodynamic principles, the surface tension
of a liquid decreases with increasing temperature. This property
can be used to force a liquid film to climb a vertical substrate
whose lower end is held warmer than the top. The vertical gradient
in surface tension generates a surface shear stress that causes the
liquid film to spread upward spontaneously in the direction of
higher surface tension. Experimental investigations have shown
that the application of a large temperature gradient produces a
thin climbing film whose leading edge develops a pronounced cap-
illary rim which breaks up into vertical rivulets. In contrast,
smaller temperature gradients produce thicker films whose profiles
decrease monotonically toward the substrate with no evidence of
a rim or subsequent film breakup. We have previously shown
within linear stability analysis that a climbing film can undergo a
fingering instability at the leading edge when the film is sufficiently
thin or the shear stress sufficiently large for gravitational effects
to be negligible. In this work we show that thicker films which
experience significant drainage cannot form a capillary rim and
spread in stable fashion. Gravitational drainage helps promote
a straight advancing front and complete surface coverage. Our
numerical predictions for the entire shape and stability of the
climbing film are in good agreement with extensive experiments
published years ago by Ludviksson and Lightfoot (AIChE J. 17,
1166 (1971)). We propose that the presence of a counterflow
which eliminates the capillary rim can provide a simple and gen-
eral technique for stabilizing thermally driven films in other geom-
etries. © 1998 Academic Press

Key Words: drainage; thermally driven spreading; coating films;
Marangoni forces.

INTRODUCTION

Thermodynamic considerations of the surface entropy at
an air-liquid interface at finite temperature dictate that the
surfacetension of aliquid is adecreasing function of temper-
ature. This property can be used to generate climbing films
which coat surfaces in vertical geometries. Subjecting a ver-
tical substrate to a temperature gradient whose lower end is
warmer than the top will produce an upwardly directed sur-
face tension gradient in an adjacent liquid film. The surface

! To whom correspondence should be addressed.

335

tension gradient, which depends on the particular tempera-
ture distribution along the substrate, creates a surface shear
stress that forces the liquid film to climb above the position
of the equilibrium meniscus. Concentration variations at an
air—liquid interface, which are more difficult to control, can
produce a similar shear stress which causes a liquid coating
to spread upward against gravity. Such ‘‘supermeniscus’
films have been shown to be important in the operation of gas
diffusion electrodes in which the oxidation reaction occurs
almost exclusively in the region above the normal meniscus
position (1). Enhanced spreading behavior has also been
observed in boundary lubrication problems in which the
evaporation of volatile impurities in the spreading films es-
tablishes a spontaneous concentration gradient (2). Flows
created by gradients in surface tension, whether induced by
temperature or concentration variations, are commonly
called thermocapillary or Marangoni-driven flows. These
types of flows, which become dominant in situations where
the surface-to-volume ratio of the liquid film is large, are
receiving increased attention as technological advances en-
courage the production of smaller and lighter componentry.

Although temperature or concentration gradients can
therefore be used very effectively to guide a spreading film
to coat a substrate, the coating process will be unsuccessful
if the liquid spreads nonuniformly and suffers any instability
a the leading edge. Several groups have shown that ther-
mally driven films are subject to a fingering instability at
the advancing front. In coating experiments of horizontal
(3) or vertical substrates (4, 5), thermally driven films were
observed to develop a pronounced capillary rim at the lead-
ing edge. This rim separated rather quickly into numerous
thin, parallel rivulets which remained a fixed distance apart
and never coalesced. Earlier experiments by Ludviksson and
Lightfoot (LL), however, showed that uniform stable coat-
ings are easily achievable with thermally forced films (6).
Reconstruction of the film thickness profiles from interfer-
ometry indicated that the coating films thinned monotoni-
cally toward the substrate with no evidence of a capillary
rim at the leading edge of the spreading film. In both the
stable and unstable situations, the fluids that were used were
known to be completely wetting against the substrate mate-
rial, so the difference in behavior cannot be attributed to
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wettability problems. A comparison of the relevant parame-
tersfrom all the available experiments (7) reveas, however,
the critical role of gravity in stabilizing the advance of a
spreading film. While the experiments employing larger ther-
mal gradients produced thinner spreading films for which
gravitational drainage or hydrostatic effects can be ignored,
the ones employing smaller thermal gradients produced
thicker filmswhich, in vertical geometry, were strongly mod-
ified by drainage.

In previous work, we investigated the spreading behavior
and linear stability of thermally driven films for which the
effects of gravity were negligible (7, 8). The shape of the
spreading film, the speed of advance, and the value of the
most unstable wavelength agreed very well with al available
experimental data for unstable films. This analysis revealed
astrong correlation between the formation of a capillary rim
at the leading edge and a subsequent fingering instability at
thislocation. The stable climbing films produced by LL were
outside the parameter range of our previous calculations. For
the thicker films produced by LL, the downward flux due
to gravitational drainage is comparable to the upward flux
due to Marangoni forces. In this paper we extend our previ-
ous analysis by including a counter-flow term due to gravita-
tional drainage. We show how the presence of this additional
term eliminates the capillary rim to produce a flow which is
linearly stable to perturbations of all wavenumbers. Detailed
comparison between the numerical profiles and the interfero-
metric measurements by LL for constant shear stress reveals
very good agreement despite the inherent experimental un-
certainty in the overall film thickness.

PROBLEM FORMULATION

For simplicity we consider the case of a Newtonian liquid
film, of density p and viscosity n, climbing a vertical sub-
strate bearing a constant temperature gradient. With the
warmer region located at the lower end, the film experiences
a constant upward surface shear stress, =, which counteracts
the downward acceleration of gravity, g. In the lubrication
approximation, the interfacial curvature provides a pressure
gradient at the air—liquid interface and throughout the film.
Within the ‘‘inner region’’ close to the advancing edge,
where Marangoni, gravity, viscous, and capillary forces con-
tribute, the governing lubrication eguations become
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where x represents the direction of flow, y the direction
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FIG. 1. Schematic of liquid film climbing a vertical substrate.

transverse to the flow, and z the direction perpendicular to
the substrate as shown in Fig. 1. The velocity components
u and v represent flow in the x and y directions, and p
denotes the local pressure in the film. Within the thin film
approximation, the capillary pressure is approximated by Ap
= —yV?h for small slopes, where h(x, y, t) locates the
position of the air—liquid interface and y the local surface
tension. In addition, the term coupling the interfacia curva-
ture, V°h, to the gradient in surface tension, Vv, can be
ignored in the inner region (7). In what follows we consider
variations in surface tension that are significantly larger than
variationsin thefluid density or viscosity which are therefore
held constant. Also, for liquid films whose thickness is in
the micron range, the Biot number Bi = hd/k < 1, where
h is the heat transfer coefficient of the air phase (of order
10* erg/cm? s °C), d the characteristic film thickness (of
order 10~“ cm), and k the thermal conductivity of the liquid
film (of order 10* erg/cm s°C). The ratio of the conductive
resistance to the convective resistance is very small, and
the local temperature of the liquid film can therefore be
approximated by the local temperature of the substrate. The
lubrication equations are solved subject to the boundary con-
ditions of no-dlip at the solid surface,

u1v|Z=0 = 01

[4]

and constant shear stress, 7 = (d/dT)(dT/dx), at the air—
liquid interface,

ou

= 5
U= [5]

=T.

Since for many liquids dy/dT is constant over a reasonable
temperature range, a constant shear stress simply requires
the application of alinear temperature profile. The resulting
height-averaged velocities are
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The film thickness profiles can be determined by substituting
the velocities into the kinematic boundary condition at the
air—liquid surface which yields the interface equation,

8—thg(hU) +£(hV) = 0.
ot Ox ay

(8]

We reduce this equation to nondimensiona form by ap-
propriate rescaling. The characteristic film thickness is set
by the film thickness far from the leading edge,

-
h.=a—, [9]
rg
where « is a proportionality constant corresponding to the
relative strength between the drainage and thermocapillary
forces. The coordinates x and y are rescaled by the length
of the inner region, |, over which capillary forces are opera-
ble (9-12):
| = h.(3Ca) *3, [10]
where the capillary number is defined by Ca = nU./y. The
characteristic spreading velocity, U, is given by

1- 2.
3

The value « = 3 corresponds to no net liquid flux, while the
value a = 2 represents the maximum upward flux. We restrict
our attention to climbing films for which « < 3. This choice
of scalings yield the following dimensionless variables:
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The¢ coordinateis reversed in sign so that upward spreading
tends toward £ - —. We solve the dimensionless interface
equation by requiring that the film achieve a thickness, h,,
behind the leading edge and thickness bh.(b < 1) in front
of theleading edge. This prewetted layer represents a precur-
sor film. Previous studies have discussed the usefulness of
employing a precursor film in theoretical or numerical stud-
ies in order to alleviate the stress singularity arising from
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the application of the no-dlip condition at a moving contact
line (7, 12—15). Ludviksson and Lightfoot, however, noted
the very real presence of a precursor film in their experi-
ments, making this boundary condition arealistic choice for
our numerical solutions.

Substituting the rescaled form of Egs. [6] and [7] into
the dimensionlessform of Eq. [ 8] yields the governing equa-
tion for the film thickness:
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+ [P*(V?h)]. = 0, [12]

where V? = 9., + 0. The overbars have been dropped
for convenience. In rescaled form, the appropriate boundary
conditions for h become

h>1 as £- =, [13]

h-b as &- —x, [14]

where b is the dimensionless precursor film thickness.

RESULTS

Base Flow

We seek traveling wave solutions of constant speed ¢ for
both the base and disturbed flow:
h(¢, €, t) = ho(§ + ct) + hy(§ +ct, C, 1), [15]
where h, represents the base flow solution and h, represents
an infinitesimal two-dimensional disturbance. In the experi-
ments of LL, which were designed to provide a constant
liquid flux, the leading edge of the spreading film was ob-
served to travel at constant speed in accordance with the
solutions sought. Substitution of this form into Eqg. [12]
yields the governing fourth-order equation for the base state:

3 20
Choc — 2=~ (N5)e + 53— (ho)e + (M3hocee)c = 0.

o [16]

Integrating Eq. [16] once, subject to the boundary conditions
that the film profile match onto auniformly flat film at either
extreme (£ = +), yields the equation

ho — 3 _ 2c
¢ (3-2a)hy, 3 - 2a
~ 3(1+b)—2a(1 +b+b?
(3 — 2a)h?
(3 — 2a)b — 2ab?
(3= 2a)h

[17]
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FIG. 2. Numerical solution of dimensionless base flow profile, hy(¢),

fora = 1.

where the dimensionless wave speed is determined to be ¢
=[3(1+ b) — 2a(1 + b + b?)]/(3 — 2a). Equation [17]
is converted into three first-order equations for which the
resulting initial value problem is solved in similar fashion
to other free surface problemsinvolving capillary flows (11,
15, 16). Linearizing about the boundary condition hy — 1
as £ — +o provides the starting values for the integration,

ho—1— aexp(—c*3¢) as ¢ - o, [18]

where a is a small parameter. In practice, we retain higher
order terms to provide additiona refinement for the initia
value.

Since Eg. [17] is trandationdly invariant, different
choices in the starting position £ merely shift the position
of the overal film profile in the spreading direction. For a
given starting position and choice of parameter a we ob-
tained profilesthat satisfied Eq. [17] and the required bound-
ary conditions by making small adjustments in the thickness
of the precursor layer, b. Fixing the value of b and floating
the parameter a produced the same solution. Shown in Fig.
2 is the numerical solution for « = 1. The film thickness
decreases smoothly and monotonically from the thicker por-
tion of the film toward the precursor layer with no evidence
of a capillary rim at the leading edge. Smaller values of «
are found to produce film profiles with larger values of b.

Previous calculations in the literature for thermocapillary
driven films have included a digoining pressure term in the
equation governing the film thickness (16). This term is
operable only in the thinnest portions of the liquid film. To
mimic the influence of van der Waals forces for a nonpolar
wetting film on a high energy surface, we aso included on
the right hand side of Eq. [17] aterm A,/hg, where A, =
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Anaml 2127y and Ay denotes the Hamaker constant. The
numerical profiles with or without the inclusion of the van
der Waals term are virtually identical, with the exception of
tiny differences in the precursor layer thickness. Since the
film thickness and lateral extent of the capillary region are
dtill large compared to the length scale over which van der
Waals forces can contribute, their inclusion does not change
the overall film shape leading away from the precursor film.
We therefore safely neglected thisterm in the stability calcu-
lations described next.

Linear Stability Analysis

We seek linearized disturbance solutions to the flow, hy,
which are periodic in the transverse direction and travel at
constant speed:

h,(¢ + ct, {,t) = G(& + ct)exp(igl + Bt). [19]

The parameter q represents the dimensionless wavenumber
and ( represents the disturbance growth rate. Linearizing
Eqg. [12] yields the eigenvalue equation for the disturbance
function G,

+3(1+b)—2a(l+b+b2)
B - 2a)

o[ 6 g

I |3 — 2 3 - 2«

— h3(Geee — qug)} +h3(9°G - 9°G,) =0,  [20]
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G
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which must satisfy the boundary conditions

G, G —~0 a {— xw, [21]

Equation [20] was discretized by using a central differ-
ence scheme on the same nonuniform mesh used to solve
the base flow. The eigenvalues and eigenfunctions were ob-
tained by using RGG, a standard QR agorithm in the EIS-
PACK library (17). The dispersion curve, 5(q), for the case
a = 1lisshown in Fig. 3. The flow is linearly stable since
B8(q) is everywhere negative for g > 0. Aswill be discussed
later, all values of « derived from the experiments of LL
(wherein 0.0.862 = « = 1.16) yielded linearly stable flows,
in accordance with their findings. The shape of the eigen-
function, G, for the parameter value « = 1 is shown in Fig.
4 for different choices of wavenumber. While the shape of
the eigenfunction right at the advancing front seems unaf-
fected by the wavenumber of the disturbance, larger wave-
numbers enhance the function behind the leading edge.
Smaller values of g produce dlightly faster decay to the
uniform flat film as & — . The region of rapid variation in
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FIG. 3. Dispersion curve, 5(q), associated with eigenfunction G(¢&)

fora = 1.

G corresponds directly to the precipitous portion of the base
flow, hy, where the flat film decreases sharply to meet the
precursor layer. This disturbance analysis clearly demon-
strates that drainage stabilizes the flow against any fingering
instability at the spreading front. We report in the next sec-
tion results of a simple energy analysis which compares the
relative strengths of al the forces affecting the climbing
film.

Energy Analysis

Thefollowing energy breakdown (12) describes how each
term in the disturbance eguation, Eg. [20], generates or
deletes energy from the flow. Negative contributions pro-

FIG. 4. Eigenfunction G(¢) corresponding to different values of q for
branch shown in Fig. 3.
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TABLE 1
Terms Contributing to Energy Production Rate

Term Expression Physical mechanism
1 cG; Streamwise convection from moving
reference frame
2 0 G Streamwise capillary flow induced
2% (NSGeee) by Guee
3 0, ., Streamwise capillary flow induced
— — (¢?ndG:
¢ (a*hsGy) by G
4a 0 6 hG Streamwise Marangoni flow induced
06\3-2a ° by G
4b 0 6 HG Streamwise drainage induced by G
06\3-2a °
5 0 5 Streamwise capillary flow induced
% (36hogesG) by G
6 —Ph3Gee Transverse capillary flow induced
by G
7 q'heG Transverse capillary flow induced
by hugeee

mote stability and vice versa. One can associate a* mechani-
cal energy’’ with the disturbance by defining the inner
product:

1 10
e= 2ty =2 ] (e (22

To relate the rate of energy production to the eigenfunction,
G, the disturbance equation [20] is first recast in operator
form,

hlt + Lho[hl] = 0, [23]
where the linear operator, Ly, which depends explicitly on
the base flow solution, hy, includes all the terms with spatia
derivatives in Eq. [20]. Substituting Eq. [23] into the ex-
pression for the rate of energy production, dE/dt = (h,
hy), yields

dE
o = PG G) = —(G, La[GD).

[24]
The growth rate, 5, defines the normalized, dimensionless
rate of energy production, E:

(G, Ln,[G])

(G, G) [25]

ﬁ:Etot:_

The physical origin of the eight terms contained in Ly, is
listed in Table 1. To associate an energy production rate
with each of these eight terms, we define the quantity
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(G, Ly G])

n G.G) [26]
where n represents the number assigned to each term in
Table 1. For all wavenumbers, the eight contributions to the
energy sum to the value 5(q), as was checked numerically.
In Fig. 5ais plotted the strength of each term as a function
of the disturbance wavenumber for the case o = 1.

The most dominant terms affecting the stability charac-
teristics of the climbing film in the streamwise direction
are the destabilizing Marangoni shear stress and the stabi-
lizing drainage force represented by terms 4a and 4b, re-
spectively. Since term 4b scales with h3 while term 4a
scales linearly with hy, the former term is slightly larger
in magnitude for all g because hy = 1. A magnified view of
the contributionswhich only slightly affect film stability is
shownin Fig. 5b. Theseincludeterms 1, 3, 6, and 7. Term
1is completely neutral (i.e. E;(q) = 0) sinceit represents
the convective flow contribution upon changing reference
frame to a steadily moving traveling wave. Terms 3, 6,
and 7 are the convective terms created by capillary flow
in either the streamwise or transverse directions. Thelatter
two terms are often associated with the Rayleigh-like dis-
tribution of fluid that occurs in a cylindrical column of
liquid as described previously (7, 12). Each of these
smaller terms depends at most on the second derivative
of the disturbance function, G, or the first derivative of
the base flow, hy:. The other two capillary terms, 2 and
5, which induce flow in the streamwise direction are sig-
nificantly larger (and stabilizing) since they depend on
higher derivatives of G and hy, which can be extremely
largein the part of the advancing front meeting the precur-
sor layer. As evident from Fig. 5a, drainage and stream-

a
B it T
— 1
e 2
1.0 | i3
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. 05 o5 |
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0.0 * et titialnisoivein et
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1.0 | .
0.0 0.1 0.2 0.3 0.4 0.5
q

FIG. 5.
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wise capillary flow due to the strong curvature in hy and G
overcome the destabilizing effects of Marangoni shearing
forces. Even though the base flow shows no evidence of
a capillary rim which rises above the flat portion of the
film, as we observed in unstable flow, the functions h,
and G still display significant curvature. The higher order
derivatives of these functions strongly contribute either
positive or negative sumsto the rate of energy production.
The rich spatial structure displayed by the eigenfunctions
signal the strong response produced by infinitesimal dis-
turbances of any wavenumber. Despite the sharpness of
the eigenfunctions at the leading edge, the liquid film is
stabilized by the presence of the gravity counterflow.

DISCUSSION AND COMPARISON WITH EXPERIMENT

As briefly described in the Introduction, climbing films
subject to stronger shear stresses produce thinner advanc-
ing films which destabilize in the manner predicted by
our previous calculations. For example, Cazabat and co-
workers (4, 5) reported a well-formed fingering instability
at the leading edge of a climbing film which developed
within minutes of applying avertical temperature gradient.
In these experiments, a silicone oil film subject to stresses
of approximately 0.5 dyn/cm? and higher was made to
coat a silicon wafer. In contrast, earlier experiments by
LL (6) using squalane oil spreading on a silver substrate
with surface stresses of the order of 0.2 dyn/cm? or less
seemed to produce stable spreading films with a straight-
edged moving front. Using interferometry, they recon-
structed the film thickness profiles and showed that the
film shape decreased monotonically toward the substrate
with no evidence of a capillary rim at the advancing front.

b
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(a) Contribution of each term in Table 1 to overall energy production rate for o = 1. (b) Magnified view of (a) near the axis E, = 0.
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They noted in passing the presence of a discolored and
darker region ahead of the visible front which they attrib-
uted to a precursor film. This film may have been created
during the preparation stage when the silver substrate was
prewetted by dipping it into the squalane reservoir. It may
also have developed as a diffusing film from the leading
edge of the spreading squalane during the very long experi-
mental runs which lasted from 10 to 24 h.

In order to generate the numerical profiles to compare
with experiment, we used Eq. [9] and the experimental
values from LL to determine the value of « corresponding
to each of the five experimental runs reported by LL. The
experimental values for h;, 7, and p are required as input.
As noted by LL, the thickest part of the film, h, is only
known to within 0.0938 um, since the position of the first-
order fringe emanating from the precursor layer can only
be estimated approximately. In addition, the data points
corresponding to the thickest parts of the spreading film
are the most unreliable since the flattest portion produces
very broad fringes whose position is difficult to measure.
Nonetheless, we used the values quoted by LL for this
limiting film thickness to reproduce the appropriate curves
in dimensional form. The liquid density of the squalane
was calculated at the average temperature of the substrate
for each of five experiments according to the curve for
p(T) provided by LL. All relevant parameters used to
generate the numerical curves are listed in Table 2. Figure
6 is a comparison of the numerical solutions for all five
experiments. The error bars shown on the curve 7 = 0.133
dyn/cm? correspond in magnitude to 2 x 0.0938 um. The
actual experimental profiles lie somewhere within this er-
ror range. The theoretical curvesin Fig. 6 were first gener-
ated by choosing the value of « corresponding to the value
of h. reported by LL. We then shifted the profiles slightly
in the vertical direction (recall that the horizontal shift is
arbitrary) in order for the curvesto best fit the experimental
data. For the case T = 0.147 dyn/cm?, the last data point
lies well outside the theoretical prediction. It isinteresting
that LL specifically mentioned the difficulty they had in

TABLE 2
Results for Vertically Spreading Films Examined
by Ludviksson and Lightfoot (6)?

N T P U (he) Uep
(um) (dyne/cm?) (g/em?) a (um/s) (um/s)
0.94 0.086 0.805 0.862 0.0633 0.0531
1.40 0.108 0.816 1.04 0.0680 0.0714
1.78 0.133 0.798 1.05 0.138 0.139
2.16 0.147 0.806 116 0.132 0.178
2.35 0.185 0.803 1.00 0.289 0.249

#Values for a are caculated using Eq. [9]. The dimensiona traveling
wave speed U,, is given by U, (Eq. [11]) multiplied by the dimensionless
traveling wave speed c.
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FIG. 6. Comparison of numerical and experimental film thickness pro-
files. Vaues of 7 are in units of dyn/cm?. Filled symbols represent experi-
mental data (6). Solid and dashed lines represent theoretical solutions.

determining the highest order fringe for this particular ex-
periment. The agreement between the experimental and
numerical profiles for the film shape is fairly good except
for the lowest shear stress, 7 = 0.086 dyn/cm?. Unlike the
theoretical prediction, this experimental profile displays no
curvature at the leading edge and is unlike any of the other
profiles measured by LL. Since no experimental explana-
tion was provided for this suspect behavior, it is not of
concern that the theoretical prediction fails to reproduce
this unusual shape. Perhaps another mechanism like sur-
face diffusion, which is not included in the model, can
account for this behavior.

The agreement shown in Fig. 6 is surprisingly good
given the inherent measurement error in several of the
important parameters required by the theory. The agree-
ment for the larger values of = seems slightly better.
This can be understood by noting some details about the
temperature measurements. Although LL reported that
the applied temperature gradients were linear to within
about 5%, their measurements indicated that the tempera-
ture profiles along the vertical substrate exhibited some
nonlinearity close to the warmer region where they re-
corded a higher temperature gradient. The nonlinearity
was more pronounced for smaller temperature differences
between the warm and cool ends. Besides this error, the
accuracy of the thermistor reading along the substrate
becomes less reliable with smaller temperature gradients.
For example, atypical 125 um thermistor is at best accu-
rateto =0.25°C. This uncertainty can yield errors as large
as 25% for atemperature difference of 2°C, which corre-
sponds to the smallest gradient used by LL. Another
source of error stems from the inferred values of 7. LL
stated that their values of dy/dT were only known within
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5%. This estimate, coupled with a 5% or more error in
the determination of the temperature gradient, dT/dx, can
produce values of = which arein error by at least 7%. It
is clear from our numerical work that even better agree-
ment can be achieved by accounting for these errors in
the input values for the film shape.

Besides the shape of the spreading film, one can aso
compare the speed of the traveling wave solution with the
measured speed of the climbing films, U, for different
values of the shear stress. In Fig. 9 of Ref. (6) the climbing
speed of the spreading squalane films was indeed shown to
remain constant after the first 4—6 h of spreading, which
satisfies the steady state conditions of the model. All experi-
mental measurements were taken after any transient behavior
had died away. The model predictsa(dimensional ) traveling
wave speed,

Uw = cUe = {[3(L + b) — 2a(1 + b + b?)]/

[3 — 2a]} (7he/2n — pgh2/3n). [27]
The comparison for the climbing speed is shown in Table
2. Agreement is quite good except for the case = = 0.147
dyn/cm?. This discrepancy can probably be traced once
again to the difficulty LL described in measuring the position
of the last fringe in the thick part of the film used to deter-
mine he, and therefore h..

Thereis at least one other theoretical study in the litera-
ture by Teletzke et al. (16) describing the shape of ther-
mally driven climbing films. In this work the governing
third order equation for hy was also converted into an
initial value problem and solved in amanner similar to that
described above. Although the numerical profiles werein
qualitative agreement with those measured by LL, quanti-
tative comparison revealed that the extent of the capillary
region over which the film shape bends to meet the precur-
sor layer was only one-third as broad as indicated by the
experimental profiles. We find that their discrepancy with
experiment is at least partly due to algebraic errors in
determining the correct linearized form of h(¢) required
to initiate the integration scheme. In addition, when non-
dimensionalizing the equations, Teletzke et al. scaled both
the film thickness and the extent by the same and rather
sizable length scale, (y/pg)*'2. Although this may be a
reasonable scale with which to non-dimensionalize the
extent of the so called ‘‘inner region’’ where capillary
forces compete with the other relevant forces, it seems an
inappropriate scale for the film thickness, whose scale is
set by the competition between Marangoni and drainage
forces. The capillary length is typically of order millime-
ters while the film thicknesses in the experiments of LL
were typically in the micron range. We instead chose dif-
ferent scalings for the film thickness and the *‘inner re-
gion’’ consistent with the lubrication approximation.
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Whether the previous disagreement noted by Teletzke et
al. was due to algebraic errors or numerical problems
associated with the choice of scaling parameters, we find
that our scaling choice captures very well the extent and
shape of the curved region near the advancing front. We
have initiated an experimental program to collect data
over a wider parameter range in order to test and further
improve the model being used.

We have compared the shape of the climbing films, hy,
and the disturbance eigenfunctions, G, for both stable
and unstable flows. In our previous work, it was shown
explicitly that a capillary rim, whose height rises above
the flat part of the spreading film, is required for instabil-
ity. The disturbance function displayed a strong peak |o-
calized in the forward portion of the capillary rim. As
the thickness of the precursor was increased to values
approaching the original film thickness, the capillary rim
vanished and the spreading process was stabilized against
fingering instability at the leading edge. In this present
work, we have shown that gravitational drainage depletes
the contents of the capillary rim and produces a smoothly
decreasing film profile with no evidence of a‘‘bump’’ at
the leading edge. The spreading is perfectly stable and
advances over the solid substrate with a straight-edged
front. One may wonder whether the instability is caused
simply by the amplitude of the capillary rim or whether
it is caused by the sizable curvature of the film profile
near the leading edge. As shown in Figs. 2 and 4, how-
ever, even the stable fronts exhibit strong curvature at
the leading edge. A careful comparison between the eige-
nfunctions shown in this study and those previously ob-
tained by us for the unstable flow reveals practically the
same shape at the leading edge. The differences become
apparent behind the large peak where the disturbance
must die away to meet the undisturbed film thickness.
The disturbance function in Fig. 4 decays smoothly to
zero as £ increases, while the disturbance function for
unstable flow (7) displays one oscillation after the peak
istraversed. We believe it is this oscillation in the curve
that leads to instability. This suggests that it is not so
much the curvature of the film shapes that leads to insta-
bility as the amplitude of the capillary rim.

SUMMARY

We have examined the effect of gravitational drainage on
the stability of a nonvolatile climbing film driven to spread
vertically by the application of a constant temperature gradi-
ent to the adjacent substrate. The numerical solutions, which
are found to be linearly stable to perturbations of all wave-
numbers, decrease smoothly and monotonically toward the
leading edge. The calculated shapeisin excellent agreement
with experiments by LL, the only available experiments in
the literature on stable climbing films, except for the case
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of very low shear stress. Small discrepancies between the
theoretical curves and the experimental measurements can
easily be accounted for by inspecting the experimental proto-
col. For example, for smaller values of the shear stress, it
is somewhat difficult to achieve a constant temperature gra-
dient throughout the length of the spreading film. This diffi-
culty, along with the usual uncertainty in predicting the abso-
lutefilm thicknessfrom interferometry, provides enough lati-
tude for bringing into even better agreement numerical and
experimental quantities. The linear stability analysis accu-
rately predicts stable and uniform flow, which is borne out
by the extensive set of experiments conducted by LL for
time periods ranging from 10 to 24 h. We therefore conclude
that gravitational drainage effectively eliminates the forma-
tion of the capillary rim observed in unstable spreading films.
Nonetheless, the film profiles retain significant curvature and
structure upon approach to the precursor layer. We suggest
that it is not so much the strong curvature of the film profiles
but the maximum amplitude of the capillary rim that engen-
ders unstable flow.

Our results show that stable, uniformly spreading films
can be produced by the application of a smaller tempera-
ture gradient which produces a thicker film subject to
gravitational drainage. This stabilizing mechanism pro-
vides afavorable alternative to prewetting the surface with
a sizable film, which we previously showed would also
stabilize films driven by thermocapillary forces. Our anal-
ysis suggests that perhaps other counterflow arrangements
can be employed to remove the capillary rim and promote
stable flow. Though the counterflow produced with are-
tarding surface or body force will slow the advance of
the spreading film, its presence will ultimately produce
homogeneous surface coverage, the most important re-
quirement in coating applications.

APPENDIX: NOMENCLATURE

a small parameter in initial value problem
Ag dimensionless strength of van der Waals forces

A.n  Hamaker constant

b dimensionless precursor film thickness

c dimensionless traveling wave speed

Ca capillary number

E energy

E, dimensionless normalized rate of energy production
for term n

Eo dimensionless normalized rate of total energy pro-
duction

G dimensionless eigenfunction associated with stream-
wise component of disturbance flow

g gravitational constant

h film thickness

ho dimensionless base flow film profile

h, dimensionless disturbance function
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he characteristic film thickness

hew  experimental film thickness

I length scale of inner region

Ly, linear disturbance operator

n term index

p pressure

q dimensionless disturbance wavenumber

T temperature

t time

U height-averaged velocity in streamwise direction
u local velocity in streamwise direction

U, characteristic velocity

Uep experimentally measured velocity

U. traveling wave velocity

\% height-averaged velocity in transverse direction
v local velocity in transverse direction

X streamwise coordinate

y transverse coordinate

z coordinate perpendicular to substrate

Greek Symbols

a parameter reflecting the ratio of gravitational to ther-

mocapillary liquid flux

Jé) dimensionless disturbance growth rate
y local surface tension

d dimensionless transverse coordinate

n viscosity

£ dimensionless streamwise coordinate
P density

-

surface shear stress induced by thermal gradient
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