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A thin liquid coating can spread vertically beyond the equilib-
rium meniscus position by the application of a temperature gradi-
ent to the adjacent substrate. So called super-meniscus films expe-
rience a surface shear stress which drives flow toward regions of
higher surface tension located at the cooler end of the substrate.
The Marangoni stresses responsible for this spreading process can
also be used to coat horizontal surfaces rapidly and efficiently.
Experiments in the literature have shown that in either geometry,
the advancing front can develop a pronounced ridge with lateral
undulations that develop into long slender rivulets. These rivulets,
which prevent complete surface coverage, display a remarkable
regularity in height, width, and spacing which suggests the pres-
ence of a hydrodynamic instability. We have performed a linear
stability analysis of such thermally driven films to determine the
most dangerous wavenumber. Our numerical solutions indicate
the presence of an instability at the advancing front of films which
develop a sufficiently thick capillary ridge. Our results for the film
thickness profiles and spreading velocities, as well as the wave-
number corresponding to the most unstable mode, compare favor-
ably with recent experimental measurements. An energy analysis
of the perturbed flow reveals that the increased mobility in the
thickened portions of the films strongly promotes unstable flow,
in analogy with other coating processes using gravitational or cen-
trifugal forces. © 1997 Academic Press

Key Words: fingering instability; Marangoni stress; coating
flows; capillarity.

INTRODUCTION

Coating processes normally require an external driving
force to spread a liquid film along a solid substrate. Tilting
or spinning a substrate can provide the necessary body force
to coat a substrate rapidly and efficiently. For situations in
which the substrate cannot be moved or readily accessed,
surface forces can be manipulated to drive the spreading
process. For example, thermal gradients provide an espe-
cialy useful way to direct thin films into small crevices
requiring lubrication. A liquid film supported on a substrate
subject to a thermal gradient will experience a varying sur-
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face tension depending on the local temperature since colder
regions of the air—liquid interface maintain a higher surface
tension than the warmer regions. A thin liquid film in contact
with a vertical substrate to which is applied a temperature
gradient will experience a surface shear stress. This ther-
mally induced Marangoni stress will force the liquid to
spread vertically beyond the equilibrium meniscus region
and form a super-meniscus film (1).

The growing interest in micromachinery and lubrication
phenomena has spawned many studies of thin interfacial
films subject to surface forces. In cases where the liquid
surface to volume ratio is significant, even small surface
forces can create unusual flow patterns and large flow veloci-
ties. Over the years, severa experiments have examined the
spreading of thin nonvolatile films driven by a constant sur-
face shear stress. Thermally induced flow has been investi-
gated in both vertical (1-3) and horizontal (4) geometries.
““Blowing off films,’’ which are driven by the action of an
air stream moving over the free surface to create a surface
shear stress, have also been studied (5) and used (6, 7) as
a technique for measuring the viscosity of Newtonian and
non-Newtonian films. Recent observations of silicone oil
spreading on a silicon wafer in either a vertical (2, 3) or
horizontal (4) geometry have shown the development of a
pronounced ridge at the advancing front with lateral undula-
tions which develop into long slender rivulets, as shown in
Fig. 1. These experiments indicate the presence of a hydro-
dynamic instability at the advancing edge. Earlier studies of
thermally driven squalane films spreading along a vertical
silver plate, however, observed no ridge at the advancing
front and no rivulet formation, despite careful observations
of the climbing film at the leading edge (1). Measurements
of the film thickness at the advancing front showed that upon
approach to the moving front, the film thickness decreased
smoothly and monotonically toward the substrate. These
smooth profiles produced uniform and compl ete surface cov-
erage, unlike the rivulets detected in the later studies. Since
these systems al involve fluids known to wet completely
the substrates on which they were spread, the results seem
inconsistent. Our analysis shows that both scenarios are pos-
sible depending on the strength of the driving force and the
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FIG. 1. Time development of the fingering instability of a climbing
silicone ail film on a silicon wafer. Illustration reproduced from Cazabat
et al. (19).

thickness of any prewetting film ahead of the nominal con-
tact line.

In this paper, we examine coating flows driven by a shear
stress created by a linear temperature profile applied to a
supporting substrate. We consider the case of a constant
shear stress for direct comparison with experiments reported
in the literature. The formalism can easily be extended to
cases of nonuniform stress. Within the lubrication approxi-
mation, we separate the flow into two regimes: an outer
region far from the leading edge driven by the balance be-
tween viscous and Marangoni forces, and an inner region
close to the leading edge in which capillary forces due to
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strong curvature also become significant. For sufficiently
thin films or sufficiently large shear stresses, gravitational
forces are negligible, in which case both vertical and hori-
zontal geometries can be treated simultaneously. The film
profiles and spreading velocities in the outer region alow a
simple analytic form. Our numerical results of the film thick-
nessin theinner region indicate the presence of apronounced
capillary ridge for sufficiently strong Marangoni stresses or
sufficiently small precursor film thicknesses. The stability
of this capillary region can be studied in direct analogy to
other forced spreading problems driven by body forces such
as gravity (8) or centrifugation (9). A linear stability analy-
sis predicts the most unstable wavenumber and establishes
a correlation between the presence of a capillary ridge and
subsequent finger-like protrusions at the advancing front.
Decreasing the amplitude of the capillary ridge promotes
stability. Following Spaid and Homsy (9), we perform an
energy analysis which demonstrates that the increased mo-
bility in the thickened portions of the films strongly promotes
unstable flow, in agreement with their previous analysis of
spin coating flows. Finally, we compare our predictions to
the squalane experiments of Ludviksson and Lightfoot (1)
and the silicone oil studies of Cazabat and co-workers (2,
3) and Brzoska et al. (4) to reconcile experimental discrep-
ancies and to highlight which parameters should be measured
to make direct comparison with the theoretical model. A
careful examination of all available experimental data re-
veals that a monotonically decreasing film thickness pro-
duces uniform and stable flow, whereas the presence of a
ridge produces an instability at the moving front. Such com-
parison furthers understanding of the mechanisms responsi-
ble for the frontal instability and can be used to design
smoother and more uniform coatings by suppressing the for-
mation of rivulets.

PROBLEM FORMULATION

We consider the flow of a thin Newtonian liquid film
spreading along the surface of a solid substrate to which
is applied a constant temperature gradient along the direc-
tion of flow. This temperature gradient produces a con-
stant shear stress at the air—liquid interface of the adjacent
liquid. In addition to this surface shear stress, there may
also exist gravitational forces, which may induce drainage,
or hydrostatic forces, which may induce film leveling.
Within the lubrication approximation, the equations of
motion reduce to
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FIG. 2. Schematic of spreading geometry for vertically climbing films.
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where x represents the direction of the flow, y the direction
transverse to the flow, and z the direction perpendicular to
the substrate. The schematic for 8 = 7/2 is shown in Fig.
2, where 6 represents the angle of inclination of the substrate
from the horizontal. The velocity components u and v repre-
sent flow in the x and y directions and p denotes the local
pressure in the film, whose surface is located at z = h(X, v,
t). The liquid viscosity, density, and local surface tension
are given by n, p, and v, respectively, and g denotes the
gravitational constant. In what follows the applied tempera-
ture gradient produces variations in surface tension which
are much larger than the variations produced in the fluid
density or viscosity. The density and viscosity of the coating
film aretherefore held constant. In addition, typical estimates
appropriate to natural convection in the air above the liquid
film indicate that the Biot number is extremely small, in
which case the heat transfer acrossthe liquid film isminimal.
The temperature profile at the liquid film surface is therefore
assumed to be the temperature profile of the solid substrate.
We solve the lubrication equations subject to the boundary
conditions of no-dlip at the solid surface

u1v|2=0: 01 [4]
and constant shear stress, 7 = (dy/dT)(dT/dx), at theair—
liquid interface

ou

- =T.
7’Iazz:h

(5]

Since dy/dT is a constant for most liquids, application of a
linear temperature profile ensures a constant surface shear
stress. Likewise, a gas stream blowing across the surface of
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athin liquid film to produce a constant shear stress can also
be described by the same equations and boundary conditions.
For regions of the flow in which capillary forces are signifi-
cant, the pressure gradient induced by surface curvature is
given by Vpe, = —V(yV?h) in the limit of small slopes.
Thetotal pressure gradient, including any hydrostatic effects,
isgiven by Vp = V(—yV?h + pgh cos 6). The resulting
height-averaged velocities are

7h  h? 9
U(X,y) = — + — — (yV°h — pgh cos 6
(X,y) 2 3nax(7 pgh cos 0)
_pghzsine [6]
3n
h? 9
V(X,y) = — — (yV?h — pgh cos §). 7
(4. Y) = 305 (V= pghcose). (7]

The film thickness profiles can be determined by substituting
the velocities into the interface equation

oh

9 9 _
E+a_x(hu) +a—y(hV) = 0. [8]

Gravitational effects are negligible for film thicknesses h <
7/(pg sin 0) if drainage is present (4 > 0) or he < 7/(pg
cos ) if hydrostatic forces are present (6 < w/2). The
lubrication parameter ¢ = h./L. < 1, where h. represents
the characteristic film thickness and L. the characteristic ex-
tent of the spreading film in either the x or y direction. The
height-averaged velocities for films satisfying these condi-
tions become

th h? 9
U(X, Y) = — + — — (yV*h 9
(Y = 50+ 5 (V) (9]
h? o
Vi) = 5o (V). [10]

For regions of the flow in which capillary forces are negligi-
ble, the velocity profile in the x direction reduces to planar
Couette flow.

Outer Region

Marangoni forces and capillary forces exert their influence
over different length scales. On length scales, L., comparable
to the extent of the spreading film, capillary effects are negli-
gible provided

yhe v

iadre €? < 1,
7L Ay

[11]

where 7 ~ Avy/L; and Ay is the change in surface tension
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over the length scale L.. Since v/Avy is a quantity of order
one for most liquids, this inequality is easily satisfied in the
[ubrication approximation. In this outer region it is the bal-
ance between the Marangoni driving force and the viscous
retardation effects due to the no slip condition at the substrate
that sets the characteristic velocity for the spreading film,

boh

=3 [12]

Substitution of Eq. [12] into Eg. [8] yields the interface
equation for the film thickness,

h + = hh, = 0, [13]
n

which can be solved by the method of characteristicsto give

h

X = x4 (h) + = t. [14]
n

The quantity X, (h) representstheinitial value of acharacter-
istic. Equation [14] can therefore be inverted to obtain the
film thickness

hon [ X%
T t ,

which, for sufficiently long times when memory of initial
conditions is erased, assumes the self-similar form

Tt

For a finite reservoir of spreading fluid of constant width in
the transverse flow direction, the global mass balance dic-
tates that

[15]

[16]

()
f h(x, t)dx = A,

0

[17]

where xy(t) denotes the downstream edge of the film and
A the cross-sectional area of fluid in the x—z plane. Substitu-
tion of the self-similar profileinto Eq. [17] givesthe position
of the leading edge of the film for the outer region,

"o, = <&>1/2t1/2.
n

Equation [16] indicates that the film assumes a ramp pro-
file which ends abruptly and achieves its maximum height

[18]

Inner Region
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at the leading edge of the outer region. An inner region
therefore exists in which this film height must smoothly
decrease to meet the substrate. This decrease in film thick-
ness will involve significant curvature such that capillary
forces must be included as part of the force balance. The
pressure gradient in the inner region is therefore nonnegligi-
ble and of the form Vpe, = —V(yV?h). The term on the
right-hand side involves gradients of the surface tension, v,
as well as gradients in the curvature, V?h; however, the
gradient in surface tension is of order dy/dx ~ Avy/L.,
whereas the gradient in curvature is of order h/I3, where |
represents the much smaller scale of the inner region which
we define in Eq. [20] . The pressure gradient which couples
curvature effects to gradientsin surface tension can therefore
be ignored at the scale of the inner region with the result
that the total pressure gradient throughout the film is

Vp = —yV(V?h). [19]
A scaling analysis of Eq. [9] determines the extent of the
inner region which represents the length scale over which
Marangoni forces, viscous forces, and capillary forces bal-

ance, namely,

| = hy(3Ca) ¥, [20]
where hy is the film thickness at the leading edge of the
outer region, Ca = nUy/y is the capillary number, and Uy
is the height-averaged velocity in the downstream direction
evaluated at hy. Aswe shall see, the flow in the inner region
requires only the value of the film thickness, hy, to set the
scale of theincoming fluid flux. Many different coating prob-
lems can therefore be modeled in the same fashion. The
leading edge of thin spreading films driven by gravity asin
falling films, by centrifugation as in spin coating problems,
or by surface shear stresses as in super-meniscus films or
blowing off films can all be modeled identically in the inner
region where aforce bal ance exists between the driving force
for spreading, capillarity, and viscous retardation (8—11).

To solvefor the flow near the leading edge, wefirst rescale
the variables in Egs. [ 8] —[10] according to the characteris-
tic scales in the inner region. The film thickness is rescaled
by hy, time is rescaled by 1/Uy, and the velocity fields, U
and V, are rescaled by Uy. We stretch our inner coordinates
tobe ¢ = —x/l and { = y/l and solve the resulting dimen-
sionless equation subject to the asymptotic boundary condi-
tions behind and ahead of the leading edge. For convenience,
we have reversed our coordinate system such that the inner
region matches onto the outer region as £ — +oo. The film
thickness in the inner region must smoothly match onto the
film thickness hy.

The boundary condition as £ = —« requires some discus-
sion. It iswell known that adherence to the no slip boundary
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condition in situations involving the spreading of a liquid
on a solid will produce a singularity in the stress at the
position of the moving contact line, defined as the position
where the liquid meets the solid substrate. Singularities of
the flow often signal some breakdown in the assumptions
of the model. Two different approaches have been used to
aleviate this mathematical problem for cases of liquid-on-
solid spreading. The first approach requires the use of some
phenomenological slip boundary condition near the contact
line (12, 13). Severa models have been proposed in the
literature, and each share the feature that the singularity is
removed by somehow preventing the liquid molecules from
actually sticking to the solid substrate. The second approach,
which we follow, assumes the existence of a precursor film
beyond the nominal contact line (14, 15). This precursor
film can be purposely coated onto a substrate or develop
naturally as a result of evaporation/condensation processes
or surface diffusion occurring at the advancing front of the
spreading film. The thickness of this precoating film can
therefore assume macroscopic to microscopic dimensions,
but in either case, its presence conveniently removes the
singularity at the contact line. Of course, beyond this precur-
sor film one encounters the same difficulty at the new posi-
tion of the contact line (which is usually relieved by a dlip
condition), but the singularity at the original position of the
contact line has been removed. Previous studies of driven
spreading problems have shown that both the base flow and
perturbed profiles are relatively insensitive to the approach
taken, be it the dlip or precursor film model (9, 16). The
asymptotic boundary condition in the inner region therefore
requires that the film thickness smoothly matches onto the
precursor film thickness, bhy, as £ = —».

Substituting the expressions for the velocity, [ 9] and [10],
into Eq. [8] and employing the scalings introduced above
yield the dimensionless interface equation for the inner re-
gion,

he = [h? = h*(V*h)]e + [W*(V*h)], = 0, [21]
where V? = 9, + 9¢¢. In general, the solution to Eq. [21]
must satisfy four boundary conditions in &, four boundary
conditions in £, and one initial condition. The absence of
any explicit dependence on £ and { implies that the solutions
for h are trandationally invariant in the ¢ and C directions.

RESULTS

Base Flow

To solve for the film thickness profile, we postul ate a one-
dimensional traveling wave solution for the unperturbed flow
of the form hy(¢ + ct), which incurs an infinitesimal two-
dimensional exponential disturbance, h;(¢ + ct, {, t), ac-
cording to
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h(& €, t) = ho(§ + ct) + hy(€ +ct, C, t). [22]

Substitution of this first-order expansion into Eq. [ 21] yields
an ordinary differential equation for the base flow prafiles,
choe — (h3): + (h3hoeee)e = O, [23]

which, when integrated once and subject to the four bound-
ary conditions

hy > 1and hy >0 as & — [24]
ho— band hye >0 as & — —oo, [25]
yields the base flow equation
b 1+b 1

Moriarty et al. (11) previously solved this equation, which
also arisesin spray coating applications, by using the method
outlined by Tuck and Schwartz (16) in which a third-order
equation is converted into three first-order equations and
solved asan initia value problem. Theinitial valueisderived
by linearizing Eq. [26] about the asymptotic value h, — 1
as £ — +« to give the form

ho = 1 + a exp(—ag)cos(a3¢) as & = », [27]
where a = (1 — b)*3/2 and a is a small parameter about
which the solution is iterated until convergence is achieved
so that hy = b as £ - —o. When actually employing the
expansion about hy, the second-order term proportiona to
a? is also retained to further strengthen the initial value for
numerical integration. As observed in other coating problems
(11), it is not actually possible in practice to prevent the
solution for h, from diverging as £ — — since the exponen-
tially growing solution near hy, — b beginsto create numerical
divergences. Fortunately, one can solve for afinite and self-
consistent solution to seven digit accuracy in the parameter a
before the numerical instability is established. The numerical
solution requires anonuniform mesh to treat properly regions
of the flow where the film thickness exhibits rapid variation
in height and curvature. Solutions to Eq. [ 26] for precursor
film thicknesses ranging from b = 0.01 to b = 0.90 are
plotted in Figs. 3a and 3b. It becomes increasingly more
difficult to investigate smaller values of b because the expo-
nentially growing solution begins to diverge even closer to
the position where the fluid wedge joins the precursor film.
The range of values explored, however, accurately captures
all of the important features of the base flow and its stability
characteristics. A significant feature of the film profiles is
that the amplitude of the capillary ridge decreases as the
precursor film thickness increases.
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FIG. 3. Base flow film profiles of the inner region for small (a) and large (b) precursor film thicknesses.

Linear Sability Analysis

Since Eq. [21] is fully separablein &, {, and t, we seek
solutions to the next order, h,, which are periodic in { and
exponential in time. The normal mode form for the distur-
bance becomes

hi(§ + ct, C, t) = G(¢§ + ct)exp(ial + At), [28]

where q is the dimensionless wavenumber and 3 is the
growth rate of the perturbation. The resulting eigenvalue
equation for the disturbance function G is

BG + (1 + b)G; — a% [2hG — 3N3heeeG

— h3(Geee — 9°Ge)] + h3(q°G — 9°G) = 0, [29]
which must satisfy the four boundary conditions

G, G —~0 a ¢{— *xow, [30]
As observed in other driven spreading problems, if the base
flow hy were perfectly flat everywhere, integrating Eq. [ 29]
once and applying the decay boundary conditions to all
higher derivatives of G would yield 8 = —q*h}. The eigen-
value S would therefore always be negative implying stable
flow for any wavenumber disturbance. It is therefore the
complex spatial structure of hy, as shown in Figs. 3a and
3b, that gives rise to unstable flow.

Equation [ 29] was discretized using a central difference
scheme with a nonuniform mesh such that regions of rapid
variation in the base flow are accurately represented. The

solutionsfor thin precursor films require more mesh points
since the base flows display significant curvature upon
approach to the precursor film. The eigenvalues and eigen-
functions of the discretized equations were calculated us-
ing RGG, a standard QR algorithm in the EISPACK li-
brary (17). In Fig. 4awe plot the dispersion curves, 5(Qq),
for relatively thin precursor films. The eigenvalue S is
positive over a range of wavenumbers indicating that the
base flow is linearly unstable to disturbances in this re-
gime. The thinnest precursor film investigated, namely b
= 0.01, yields the largest eigenvalue at a wavenumber
corresponding to gne =~ 0.35. Varying the precursor film
thickness by afactor of 25 does not change this maximally
growing wavenumber by more than roughly 10%. This
value of g corresponds to a dimensional wavelength \
~ 18l. The dispersion curves for thicker precursor films
intherange b = 0.25 areillustrated in Fig. 4b. In contrast
to spreading films with thin precursor layers, films with
very thick precursor layers of order b = 0.5 are linearly
stable to all wavenumbers. This result clearly illustrates
that thicker precursor films promote stable spreading.
Figure 5 illustrates the shape of the eigenfunction corre-
sponding to a range of unstable wavenumbers for b = 0.10.
This disturbance function islocalized precisely in the region
where the base flow solution decreases from its maximum
value to match smoothly onto the precursor film. Smaller
values of b cause the function G to become even steeper
near the advancing front and to narrow dightly in width.
This sharpening effect is directly correlated to the larger
value of hy,, experienced at the advancing front of the base
flow for spreading over thin precursor films. To visualize
thefull linearized solution to the spreading problem, we have
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FIG. 4. Dispersion curve as a function of wavenumber g for small (a) and large (b) precursor film thicknesses.

extended the most unstable mode for b = 0.10 periodically in
the { direction and superimposed this disturbance onto the
base flow, as shown in Fig. 6. The magnitude of the distur-
bance has been exaggerated somewhat to illustrate the incipi-
ent rivulet formation. To capture the rivulet formation at
later stages, one needs to solve the full, nonlinear equation
[21], aproblem for future investigation. Although the linear
stability analysis has demonstrated the conditions for which
a thermally driven film can experience an instability at the
advancing front, we cannot conclude simply from the shape
of the disturbance what physical mechanisms give rise to

— q=0.10
et q=0.20
---- q=0.30
—_—— q=0.40

1.0 |

08 |

FIG. 5.

Eigenfunction G corresponding to the largest eigenvalue for a
dimensionless precursor film thickness of b = 0.10.

unstable flow. The following energy analysis clearly eluci-
dates the two mechanisms responsible.

Energy Analysis

Following the method outlined by Spaid and Homsy (9),
who examined the stability of flows driven by centrifugation,
we seek to determine the destabilizing mechanisms leading
to rivulet formation in thermally driven films. This analysis
examines each term in the disturbance equation [29] to de-
termine whether it contributes or removes energy from the

50
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FIG. 6. lllustration of the onset of instability. The eigenfunction of

the most unstable mode is superimposed upon the base flow profile for a
dimensionless precursor film thickness of b = 0.10.
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TABLE 1
Terms and Corresponding Mechanisms Involved in Energy Analysis

Term Expression Physical mechanism
1 1 + b)Ge Convective flow in ¢ direction due to traveling wave reference velocity
2 010¢(n8Gecc) Capillary flow in ¢ direction induced by perturbation curvature in &
3 —010¢(q*h3G;) Capillary flow in ¢ direction induced by perturbation curvature in
4 —010¢(2Ghy) Marangoni flow in £ direction due to perturbation thickness variations
5 010¢(3Gh3hoecc) Capillary flow in ¢ direction due to perturbation thickness variations
6 —°hiG., Capillary flow in { direction induced by perturbation curvature in &
7 g*nEG Capillary flow in ¢ direction induced by perturbation curvature in ¢

applied perturbation. The mechanical energy of the distur-
bance is defined as an inner product of the disturbance film
thickness according to

10,1
e=1{ rae=Zenny sy

T2
Recasting the linear equation [ 29] in terms of the full expres-
sion for h; yields the compact operator form

hy + La[N:] = O, [32]

where the linear operator L;,, which depends on the base
flow solution, includes al of the terms with spatial deriva-
tivesin Eq. [29]. Calculating the rate of energy production,
dE/dt = (h;, hy), by taking the inner product of Eq. [32]
with h; yields

dE
& = PG, G) = (G, Ly[G]).

[33]
The dimensionless normalized rate of energy production,
E.., is therefore calculated to be

(G, Ly[GD)

ﬁ:Etot: <G,G>

[34]

The operator Ly, consists of seven terms, described in Table
1, each corresponding to a particular convective term in the
overall flow. In Figs. 7 and 8 we have plotted for two differ-
ent values of the precursor film thickness the contribution
to the energy production rate from each term, n = 1, .. .,
7, listed in Table 1, namely,

(G, Ll GD)

n = <G,G> [35]

Terms with positive values of E, destabilize the flow while
terms with negative values of E, stabilize the flow.

We have studied the partitioning of energy among the
different flow contributions for a large range of disturbance
wavenumbers and several values of the precursor film thick-
ness. Typical results of our studies are plotted in Fig. 7 for
b = 0.01 and Fig. 8 for b = 0.10. By definition, the sum of
al contributions for each value of q equals the eigenvalue
6(q). As observed in al cases studied, the inner product of
h, withterm 4 in Table 1 yieldsthe largest destabilizing term.
Thisterm, labeled 4 in Figs. 7 and 8, reflects contributions to
Marangoni flow in the streamwise direction created by re-
gions in the flow where the local film thickness increases as
aresult of the applied perturbation. This enhanced mobility
is by far the largest contributor to unstable flow. This same
effect occurs in other driven spreading problems such as
spin coating (9) in which regions of the flow which are
locally thickened by the perturbation experience a higher
mobility and therefore travel faster than neighboring thinner
regions, thereby destabilizing the initially uniform front. As
expected, the thicker the precursor film, the smaller the mag-
nitude of this destabilizing term. Term 6 in Figs. 7 and 8
reflects a Rayleigh-like fluid redistribution, in which curva-

2.0 L L L 2
0.0 0.2 0.4 0.6 0.8

q
FIG. 7. Contribution to energy production of each term in the distur-

bance eguation for a dimensionless precursor thickness of b = 0.01.
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ture in the streamwise direction pumps fluid from the thinner
portions of the film with higher Laplace pressures to thicker
portions of the film with lower Laplace pressures. Asin the
breakup of aliquid jet, this type of term is destabilizing, but
in this case not nearly so much as the Marangoni term. In
fact, since the most destabilizing mode occurs around q ~
0.35, this term hardly contributes to the instability of the
capillary ridge. Term 7 is, of course, always stabilizing. This
term corresponds to the second type of Rayleigh-like term
in fluid jets, in which curvature in the transverse direction
redistributes fluid from the thicker portions of the film with
negative curvature to the thinner portions of the film with
positive curvature. Term 1 does not affect the stability of
the flow since it merely reflects the change in reference
frame velocity to that of a traveling wave with nondimen-
siona velocity ¢ = 1 + b. Terms 3 and 5 are also stabilizing
since capillary terms are here diminishing the change in the
curvature of the rim in both the streamwise and transverse
directions, thereby flattening the film and reducing the local
mobility. The effect of term 2 for thin precursor films is
somewhat surprising. Apparently for thin enough precursor
films in which the perturbation G can assume a very steep
advancing front and narrowed width, the Laplace pressure
actsto further thicken the already thick portions of the capil-
lary ridge. It would be interesting to explore extremely small
values of the precursor film thickness to determine if term
2 can eventually overtake the destabilizing mechanism inher-
ent interm 4. Asplotted in Fig. 4a, though, for wave vectors
close to gnex = 0.35, the sum total of contributions produces
unstable flow caused mainly by the increased mobility in
already thick portions of the spreading front.

DISCUSSION AND COMPARISON WITH EXPERIMENTS
Three different groups have so far studied the spreading
behavior of thermally driven thin liquid films in either a
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FIG. 8. Contribution to energy production of each term in the distur-
bance eguation for a dimensionless precursor thickness of b = 0.10.
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TABLE 2
Results for Vertically Spreading Films Examined
by Ludviksson and Lightfoot (1)

hexp n T T/ P g U exp U mar
(um) (poise) (dyn/em?) (um) (um/s) (um/s)
0.94 0.31 0.090 11 0.0531 0.14
1.30 0.39 0.095 12 0.0333 0.16
1.40 0.36 0.11 14 0.0714 0.22
1.78 0.27 0.14 18 0.139 0.46
2.16 0.27 0.15 20 0.178 0.61
2.35 0.27 0.19 25 0.249 0.84
2.25 0.23 0.19 25 0.271 0.97

Note. The listed theoretical velocities, U, were determined by Eq. [12].

vertical or horizontal geometry. In each case, the choice of
substrate ensured complete wetting by the spreading fluid.
Ludviksson and Lightfoot (1) examined the climbing of a
squalane film along a vertical polished silver wafer partly
submerged in areservoir of squalane. Cazabat et al. (2, 3)
used this same geometry to study the climbing behavior of
a silicone oil film on a polished silicon wafer. Brzoska et
al. (4) choseinstead to study the horizontal spreading behav-
ior of a small square patch of silicone oil on a polished
silicon wafer in which the total fluid volume was finite. We
discuss next the different results produced by these three
groups and compare each with our theoretical predictions.
Ludviksson and Lightfoot designed perhaps the most care-
ful experiments in that they ensured a truly linear tempera-
ture profile along the direction of the climbing film by sand-
wiching several thermistors between two highly conducting
silver plates. The temperature profile achieved was linear to
within 5%. The squalane used was purified by molecular
fractionation and chromatographic removal of polar contam-
inants by Florisil. For the temperature gradients used in their
studies, the squalane spread vertically with a straight and
uniform front. Ahead of the nominal contact line, a precursor
film was detected which was believed to be drawn from the
climbing film by surface diffusion. Interferometric measure-
ments could only resolve the maximum thickness of this
precursor film, which was estimated to be about 0.05 ym
thick. In Fig. 10 of Ref. (1) is plotted the film thickness
profile as observed by interferometry. At the leading edge,
the film profile decreases monotonically toward the substrate
with no indication of a capillary ridge. To understand this
behavior, we have tabulated in Table 2 the relevant data
from these experiments including the film thicknesses and
climbing rates. As seen in column 4 of Table 2, the experi-
ments by Ludviksson and Lightfoot are outside the regime
for which our model holds since h ~ 7/pg. If the flow were
strictly driven by Marangoni stresses, with no drainage terms
present, the velocities for the climbing films would be com-
parable to the values shown in the last column. It is clear
that the experimental values are much smaller. Calculations
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of the average velocity U including both Marangoni and
drainage terms as calculated from Eq. [6] yield velocity
estimates very close to those measured experimentally. Inter-
estingly, Ludviksson and Lightfoot did mention in their work
that after gravitational draining effects had ceased and a
constant shape for the spreading front was established, they
observed somewhat jagged and lobar forms at the spreading
front, in which some parts of the front traveled faster than
others. They observed these ‘‘fingers’ only for the higher
spreading rates but did not pursue further the details of the
instability.

The fact that the thicker films failed to display any insta-
bility at the advancing front may be related to the absence
of a pronounced capillary ridge or the absence of significant
curvature in the film thickness profile in this region. It is
interesting to note that in our stability calculations for thin
films in which drainage is negligible, increasing the precur-
sor film thickness decreases the amplitude and curvature of
the capillary ridge, which in turn promotes stable and uni-
form flow. For precursor films b > 0.50, our numerical
profilesfor h, display just asmall oscillation in film thickness
a the advancing front and yield perfectly uniform flow. In
future studies, we would like to explore situations in which
the capillary ridge is prevented from forming by studying
thicker films for which drainage is significant.

Cazabat et al. conducted two separate studies (2, 3) of
light, nonvolatile silicone oil films (polydimethylsiloxane)
climbing along a polished silicon wafer covered with a natu-
ral oxide which the silicone oil wets completely. Unfortu-
nately, there was no check on the linearity of the temperature
profile generated by placing the ends of the wafer in contact
with two temperature controlled metal blocks, nor were the
oils purified to prevent surface contaminants from further
contributing to Marangoni flow from concentration varia
tions. The spreading films were observed through areflection
microscope with laser illumination from aHe—Nelaser. The
films advanced vertically along the wafer and after severd
minutes displayed a capillary ridge, as shown in the profile
reconstructions from interferometry in Fig. 9, and lateral
undulations which eventually grew into long slender rivulets,
as shown in Fig. 1.

We have tabulated in Table 3 the relevant measurements
and theoretical estimates for these spreading films. As can
be seen by comparing the experimental thicknesses in the
second column with the ratio 7/pg, the films in this study
were certainly thin enough for drainage terms to be ne-
glected. The discrepancies between the measured velocities
and the theoretical predictions may be due to the combined
uncertainty in the measurements of the stress + and the film
thickness. The stress was measured indirectly by estimating
the temperature gradient along the wafer. The characteristic
film thicknesses were measured far from the advancing front
but not right behind the capillary ridge where h = hy. Finally,
the theoretical estimate for the climbing film due to Maran-
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FIG. 9. Film thickness profiles corresponding to the photographs in

Fig. 1. The two curves in each graph correspond to the most and least
advanced portions of the film. Reproduced from Ref. (19).

goni stresses assumes that no other forces in the outer region
affect the fluid flux up the plate. In fact, for the experimental
geometry used in Refs. (2, 3), it was observed that the high
curvature in the meniscus region of the reservoir may also
have affected the flow near the leading edge. This high cur-
vature is clearly evident at the base of the wafer in the first
photograph in Fig. 1. High meniscus curvatures could cause
capillary forces to be significant everywhere, not just in the
inner region as assumed by the model. Two recent studies
have estimated the effects of meniscus curvature on the
thickness of climbing films (3, 18). These studies show that
it isthe curvature of the reservoir meniscus which determines
the thickness of the film in the outer region. The theoretical
analysis, however, only examines the effects of curvature in
the outer region and their influence on the unperturbed film
thickness.

As for similarities between the experimental observations
and predictions of the model, we note from the top photo-
graph in Fig. 1 that the spreading film exhibits decaying
oscillations away from the advancing front, afeature evident
in the interferometric profile reconstructions shown in Fig.
9. This oscillatory behavior is predicted by the numerical
solutions of Eq. [26] and is especialy pronounced for small
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TABLE 3
Results for Vertically Spreading Films Examined by Cazabat and Co-workers
Nexp n T 7lpg Uexp Unar Aep |
Ref. (km) (poise) (dyn/cn?) (km) (umis) (umis) (km) (um) Aecl!
2 0.86 0.2 5.0 54 8* 10.7 600 27 22
2 0.65 0.2 27 29 3* 4.4 610 27 22
()] 0.54 0.2 21 23 3 2.8 480 25 19
2 0.27 0.2 10 11 1 0.68 370 20 18
%) 0.17 0.2 0.54 5.8 0.3 0.23 340 18 19
()] 0.65 10 21 22 0.8 0.7 580 28 21
@ 0.33 5.0 2.1 22 0.1t 0.07 340 18 19
3 0.11 0.2 0.46 49 0.12 0.13 350 15 23
3 0.23 0.2 0.67 7.2 0.23 0.39 370 22 17
3 0.34 0.2 0.97 10 0.73 0.82 430 25 17
(3) 0.68 0.2 1.29 14 22 2.2 640 36 18
(©)] 1.08 0.2 1.46 16 5.0 3.9 790 47 17
3 1.64 0.2 1.87 20 8.9 7.7 1160 58 20
(©)] 1.98 0.2 212 23 12.6 105 1240 63 20

Note. The asterisks (*) denote measurements for which the linear regime was too short and a dagger (1) denotes data for which the slope was not

sufficiently constant to give a precise reading.

values of b. In Table 3 we have also tabulated Cazabat et
al.’sexperimental valuesfor the wavelength of theinstability
(measured from finger tip to tip) and compared these with
our theoretical estimates. The average over al of the mea
surements taken gives a dimensionless value for the most
unstable wavelength A/l = 19.4 (or 19.0 if the unreliable
measurements indicated are removed). This is in excellent
agreement with our prediction of A/l =~ 18 from the linear
stability analysisfor our thinnest precursor films. This agree-
ment seems almost too good given the larger discrepancies
discussed above. The reason for the excellent agreement is
probably due to the fact that the inner length scale, | ~
hg3r "3, which sets the wavelength of the instability, is
less sensitive to the values of hy and 7 because of the frac-
tional powers involved. As observed in Fig. 1 or Fig. 9, the
protrusions at the advancing front form the thickest regions
of the leading edge, in qualitative agreement with our predic-
tionsthat the thicker portions advance the fastest. The mobil-
ity increase experienced by the thicker portions of the front
isresponsible for the overall destabilization of the spreading
film.

Brzoska et al. (4) examined the spreading of a light sili-
cone oil on a horizontal substrate resting on two aluminum
blocks held at different temperatures. The focus of this study
was to investigate in more detail the linear stability regime
for which the fingering regions should grow exponentially
in time. The oils used were not purified to prevent surface
contaminants from further contributing to Marangoni flow
from concentration variations. Nine small platinum thermo-
couples placed along the surface of the wafer were used,
however, to monitor the temperature profile in the stream-
wise direction, which was found to be quite uniform. Instead
of using a large reservoir of fluid, these studies investigated

the spreading behavior of a finite strip of silicone oil. The
fluid strip was applied by rolling a glass rod across a hori-
zonta line of oil droplets to produce a liquid mound which
was allowed to relax further by capillary forces. The temper-
ature gradient was only then applied to the liquid strip to
cause it to spread in the direction of the colder block. Since
the film thicknesses created by the spreading mound were
much larger than those achieved in previous experiments and
since the applied temperature gradient was much smaller, the
effective fingering wavelength was much larger and could
be visualized with a standard CCD video camera. Various
experimental and theoretical estimates are listed in Table 4.
Thefilm thickness, he,,, was estimated before the application
of any thermal gradient by weighing the wafer with the
relaxed silicone oil strip and assuming a rectangular volume
of fluid. This film thickness, hep, is therefore not related to
the film thickness, hy, used as a parameter in the model.
The estimated Marangoni velocities shown in the seventh
column, U, were calculated using this initia film thick-
ness, he,. Since there were no measurements of the liquid
spreading rates reported by Brzoska et al., we could not
conclude whether these films were strictly thermally driven.
Nonetheless, the values reported for he, satisfy the inequal-
ity he = h?/L, < 7/pg, thus ensuring that hydrostatic terms
can be neglected and our analysis applied to these systems.
The spreading films of Brzoska et al. were found to exhibit
a capillary ridge and to undergo a fingering instability with
an average dimensionless wavelength A/l =~ 22.6. This
agreement is fairly close to the theoretical prediction of A/
| =~ 18 for films with b = 0.01, especialy given that the
experimental film thickness used for this estimate was not
hy, but the estimated film thickness he,. The estimated film
thickness yields a larger value of A/l, as expected.
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TABLE 4
Results for Horizontally Spreading Films Examined by Brzoska et al. (4)

hep h?/L n T 7lpg Unnar Aep |

(pm) (pm) (poise) (dyn/cn??) (pm) (un/s) (pm) (pm) Al
154 0.00024 0.48 0.35 37 0.55 2300 98.2 23.4
33 0.0011 0.48 0.35 37 119 3600 162.6 22.1
6.3 0.0040 0.48 0.35 37 2.27 6000 250.7 239
7.3 0.0053 0.48 0.35 37 2.63 5900 276.7 21.3
9.0 0.0081 0.48 0.35 37 3.24 7400 318.6 23.2

16.0 0.026 0.48 0.35 3.7 5.76 10000 467.2 21.4

Note. The values for h?%/L. were calculated using a characteristic length L. of 1 cm. The actua characteristic length may have varied from run to run,

but was not reported in (4).

The linear stability analysis presented can easily be ex-
tended to the location of the contact line in a manner similar
to a previous stability analysis for gravitationally driven
flows (8). Within this earlier framework, the growth of the
sinusoidal shape of the advancing front can be tracked and
compared directly with theoretical predictions. For very
short times after the onset of unstable flow, the dimensionless
peak to valley distance should grow asL,, ~ exp(6t), where
[ is the dimensionless growth rate and t the dimensionless
time. Both Cazabat and co-workers and Brzoska et al. mea-
sured L,,, but the two groups observed different growth
laws. Cazabat et al. found that once the instability formed
both the peaks and valleys advanced linearly in time (2)
whereas Brzoska et al. measured exponential growth (4).
Both sets of measurements, however, included data beyond
the linear regime since the measurements were made on
fingers whose shape exceeded a simple sinusoidal form.
More extensive early time data are necessary to determine
the actual growth rate of the advancing front. Nonetheless,
comparing the value of Brzoska et al.’s parameter, m = 6.4
+ 0.4, for the rise time of the instability to our theoretical
estimate for the growth rate, (8(gma)) "+ = 9.1 for b = 0.01,
gives reasonable agreement. Smaller values of b would yield
dlightly larger values of 3, further improving agreement be-
tween experiments and theoretical predictions. Further stud-
ies of this sort designed to explore the detailed predictions
of linear stability theory would go a long way in helping
confirm or improve the theoretical modeling, as would more
careful measurements of the precise shape and velocity of
the unperturbed films on both thick and thin precursor films.

SUMMARY

We have analyzed the spreading behavior of nonvolatile
thermally driven films by separately investigating the outer
region, in which Marangoni stresses balance viscous
stresses, and the inner region, which includes these two
forcesaswell as capillarity. The outer region admitsasimple
self-similar form, h = nx/rt, where x representsthe direction

of spreading, 7 is the thermally induced constant surface
stress, and t is time. The leading edge of this linear ramp
ends abruptly at a height, hy, which must smoothly match
onto the substrate by bending the film profile. The inner
region in which the capillary forces become comparable to
viscous and Marangoni forcesis determined by scaling anal-
ysis to be of length | = hy(3Ca) *'® when the capillary
number is based on the velocity of the fluid at the entrance
to the inner region, namely U, (hy). The equation for the
inner region resembles other third-order equations describing
driven spreading problems and assumes shapes ranging from
films with a pronounced capillary ridge at the advancing
front to films with a simple monotonically decreasing thick-
ness, depending on the thickness of the precursor film as-
sumed.

The linear stability of these numerical profiles indicates
a strong correlation between the stability and the shape of
the unperturbed profiles. In particular, films with a pro-
nounced ridge and high front curvature are very unstable
to perturbations at the leading edge, while films which are
relatively featureless and flat close to the leading edge pro-
duce stable and uniform spreading. Comparison with results
from several groups indicates that the unperturbed and dis-
turbance equations accurately capture many features of the
experimental profiles, including good agreement with the
film thickness profile and the most unstable wavelength, as
well as the magnitude of the growth rate displayed by the
rivulets formed. The energy analysis for such thermally
driven flows illustrates that the main cause of the instability
is directly related to the increased mobility experienced by
thicker portions of adisturbed film. The corresponding shape
assumed by the unstable profiles closely resemblesthe exper-
imentally observed profiles.

According to our analysis, it appearsthat substratesrequir-
ing a stable uniform coating should first be precoated with
alayer of liquid at least one quarter the thickness of the film
to the coated. Thiswould prevent the formation of acapillary
ridge, yield a flatter coating, and discourage any rivulet for-
mation at the leading edge. As described earlier, it would
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be interesting to study the effects of drainage on thermally
driven films to deduce whether this additional effect could
also prevent the formation of a bulge at the advancing front.
The results from the experiments of Ludviksson and
Lightfoot certainly suggest the use of drainage as an alterna-
tive mechanism for eliminating unstable flow.

APPENDIX: NOMENCLATURE

A Cross sectional area of fluid in x—z plane

a Iteration parameter in numerical solution of base
flow

b Dimensionless precursor film thickness

c Dimensionless velocity of traveling wave

Ca Capillary number

E Energy

E., Dimensionless normalized rate of energy production
of term n

E. Dimensionless normalized rate of energy production

G Dimensionless disturbance function for streamwise
part of the flow

g Gravity constant

h Film thickness

ho Dimensionless base flow film profile

h, Full dimensionless disturbance function

h. Characteristic film thickness

Experimental film thickness

hy  Film thickness at leading edge of outer region

I Inner region length scale

L. Characteristic extent of film in outer region (stream-
wise and transverse directions)

L, Linear disturbance operator

Dimensionless peak to valley distance

m Brzoska et al.’s growth parameter

n Term index

p Pressure

Pep Capillary pressure

q Dimensionless disturbance wavenumber

Onex  Most unstable wavenumber

T Temperature

t Time

U Height-averaged velocity in streamwise direction

u Local velocity in streamwise direction

Uep Experimentally measured velocity

Umnae Marangoni velocity

Uy  Height-averaged velocity in streamwise direction

evaluated at hy
\% Height-averaged velocity in transverse direction
v Local velocity in transverse direction
X Streamwise coordinate
Xs  Initial value of characteristic

KATAOKA AND TROIAN

Xn Location of film front in analysis of outer region
y Transverse flow coordinate
z Coordinate perpendicular to substrate

Greek Symbols

Constant given by (1 — b)*3/2
Dimensionless disturbance growth rate
Local surface tension
v  Characteristic change in surface tension
Lubrication parameter denoting h./L.
Dimensionless transverse flow coordinate
Viscosity
Wavelength of fingering instability measured tip to
tip
op EXperimental wavelength of fingering instability mea-
sured tip to tip
Dimensionless streamwise coordinate
Density
Surface shear stress induced by thermal gradient
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