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Prior studies of a thin viscous film set in motion by a surface gradient in surfactant
monolayer concentration have focused attention on the rapid film thinning near the ini-
tial edge of the coated film. Studies involving delivery of a finite and dilute mass of
surfactant indicate transient amplification but eventual decay of spanwise disturbances
localized at the raised edge of the advancing monolayer film. Studies involving continuous
delivery according to t1/2 have demonstrated more pronounced transient and asymptotic
growth of upstream disturbances localized specifically within the thinning region. The
onset times, however, exceed experimental observations by several orders of magnitude.
In this work, a non-modal analysis describing sustained release by a source at the origin
held at fixed concentration reveals prolonged amplification and asymptotic instability of
disturbances within the thinning region for realistic onset times. More importantly, a
reduced model which focuses on the step increase in shear stress just upstream of the
minimum in film thickness reveals asymptotically unstable traveling waves in a reference
frame situated within this inner region. The findings of this reduced model suggest more
generally that lubrication flows subject to a step increase in shear stress, whether trig-
gered by Marangoni, thermocapillary or other surface forces, are likely susceptible to a
new type of interfacial instability.

1. Introduction

Control over the stress induced thinning and spreading rates of viscous films mobilized
by gradients in surfactant surface concentration is key to a number of coating flows in-
volving microscale liquid layers. The spatial and temporal behavior of the distorted film
shape, flow speed and surface shear stress has been the subject of numerous theoretical
studies because of the complex waveforms describing the base state profiles. The com-
bined effect of Marangoni, capillary, viscous, gravitational and van der Waals forces is
able to generate a wide spectrum of behavior whose response to perturbations in film
thickness or concentration is still not completely understand. Experimental (Gaver &
Grotberg 1992; Pereira 1995; Bull & Grotberg 2003; Dussaud, Matar & Troian 2005)
and numerical studies (Borgas & Grotberg 1988; Troian, Herbolzheimer & Safran 1990;
Espinosa 1991; Jensen & Grotberg 1992; Jensen 1994; Matar & Troian 1997, 1998) of thin
films partially coated by soluble or insoluble surfactant have established an important
and general feature of these flows; namely, the spontaneous flow of surfactant produces
rapid film thinning near the initial edge of the coated film followed downstream by an
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advancing rim where the monolayer ends and the shear stress vanishes. Experiments by
a number of groups have also shown, however, that the region of most significant film
thinning undergoes an instability resembling the formation of spanwise dendritic rivulets
that severely compromise the uniformity of the spreading film (Troian, Wu & Safran
1989; Frank & Garoff 1995; Pereira 1995; He & Ketterson 1995; Fischer, Darhuber &
Troian 2001; Cachile, Schneemilch, Hamraoui & Cazabat 2002).
Linear stability analyses based on non-normal mode decomposition by Matar & Troian

(1998, 1999a) and Fischer & Troian (2003a) have shown that delivery of a finite dilute
mass of insoluble surfactant can generate transient amplification of spanwise disturbances
as they travel past the advancing rim. Once these disturbances move into the region of
rapid film thinning, however, their amplitude is strongly damped and the perturbations
decay. Inclusion of an attractive van der Waals term in the evolution equation for the film
thickness helps sustain and even amplify perturbations within the thinned film region
(Matar & Troian 1999b; Warner, Craster & Matar 2002a,b; Fischer 2003). Numerical
studies of this behavior, however, indicate that such substantial perturbative growth is
more closely related to cusp formation and film rupture i.e. Marangoni stresses enable
rapid film thinning but are not primarily responsible for the van der Waals driven in-
stability. The region characterized by rapid film thinning is clearly relevant in either
case.
Numerical studies have shown that the rate of film thinning is strongly influenced by the

choice of initial and boundary conditions describing surfactant distribution and delivery
(Jensen & Grotberg 1992). Models of sustained surfactant release where the total mass
disbursed scales in time as t1/2 tend to generate more significant interfacial curvature
and film thinning near the initial edge of the coated film (Fischer & Troian 2003b) in
comparison to models assuming a finite mass of dilute surfactant (Fischer & Troian
2003a). A non-modal stability analysis has shown that sustained surfactant release can
generate asymptotically unstable modes within the thinned region (even in the absence
of van der Waals interactions) but onset times for instability can be a few orders of
magnitude larger than experimental observations (Fischer & Troian 2003b). Based on
these results, it seems that onset of a Marangoni driven fingering instability requires a
sufficiently large surfactant source to trigger the necessary degree of film thinning.
This hypothesis is tested in this current work by implementing sustained release from

a source whose surface concentration at the origin is fixed in time, which mimics an
infinitely large surfactant reservoir. The film thickness and concentration (base-state)
profiles in rectilinear geometry are developed in §2.1. The linearized disturbance equa-
tions for 2D perturbations are presented in §2.2. The non-uniform spatial and temporal
behavior of the evolving base states causes the generalized disturbance operator to be
non-normal and non-autonomous (Davis, Fischer & Troian 2003). As a first approxima-
tion, the non-autonomous operator is reduced to autonomous form in §3 by computing
the eigenspectrum at fixed times tc. These selected times correspond to the time scales
at which the height and concentration (base-state) waveforms adopt quasi self-similarity.
For sufficiently long times tc, spanwise disturbances localize within the region of large
shear stress which precipitates rapid film thinning, and a portion of the corresponding
eigenspectrum lies in the positive half-plane. A stability analysis which retains the full
time dependence is presented in §4, which reduces the system to an initial value problem
based on perturbative growth relative of the evolving base states. This analysis con-
firms that spanwise disturbances localized to the region of rapid film thinning undergo
sustained amplification and asymptotic instability. More importantly, the spreading dy-
namics reveals that Marangoni driven film thinning establishes a step increase in shear
stress just upstream of the minimum in film thickness. A reduced model is presented in
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§5 which describes the response of a flat thin film to a step change in shear stress. In
a reference frame coincident with the inner region, the film exhibits a distinct travel-
ing wave solution shown to be asymptotically unstable (stable) to spanwise disturbances
situated near the step increase (decrease) in shear stress.

2. Governing Equations

The schematic diagram in figure 1 depicts the initial state of a thin viscous film of
thickness h∗c , viscosity µ

∗ and density ρ∗, partially coated by insoluble surfactant (−L∗
c 6

x 6 L∗
c) for a system in rectilinear geometry. The initial surfactant concentration is

denoted by Γ∗
m; this distribution rapidly decays to zero at ±L∗

c . The surfactant reduces
the liquid surface tension from σ∗

o (uncontaminated value) to σ∗
m and the maximum

spreading pressure responsible for film mobilization is given by Π∗ = σ∗
o − σ∗

m. The
system exhibits mirror symmetry about x = 0, where the x-coordinate denotes the
streamwise direction, the y-coordinate denotes the direction normal to the solid substrate
(y = 0) and the z-coordinate represents the spanwise (transverse) flow direction. In
general, parameters marked by an asterisk reflect dimensional quantities.
The dimensionless values of the film thickness, H(x, z, t), and surfactant concentra-

tion, Γ(x, z, t), are scaled upon the initial film thickness, h∗c , and the monolayer concen-
tration, Γ∗

m. The liquid surface tension is normalized according to σ = (σ∗ − σ∗
m)/Π∗.

The streamwise (x) and transverse (z) coordinates are both scaled by L∗
c (and later re-

scaled in time changing to a moving reference frame coincident with the leading edge of
the spreading film). The characteristic flow speed established by the Marangoni stress
is given by u∗c = εΠ∗/µ∗ where the small parameter describing this lubrication flow is
given by ε ≡ h∗c/L

∗
c . The streamwise u and transverse w components of the velocity

field V = (u, v, w) are therefore scaled upon u∗c . In according with the lubrication ap-
proximation, the component v normal to the substrate is instead normalized by εu∗c . All
time scales are normalized by the convective time representative of Marangoni dominated
flow, t∗c = L∗

c/u
∗
c = µ∗L∗

c/εΠ
∗. The pressure distribution within the film is normalized

by Π∗/h∗c .
These scalings allow simplification of the continuity and Navier-Stokes equations ac-

cording to the lubrication approximation, which assumes for flat geometries that ε2 ≪ 1
and εRe = ερ∗u∗ch

∗
c/µ

∗ ≪ 1 where Re is the Reynolds number. The resulting governing
equations for the velocity field are

0 =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
(2.1)

and

0 = −∂p
∂x

+
∂2u

∂y2
, (2.2a)

0 = −∂p
∂y

−Bo , (2.2b)

0 = −∂p
∂z

+
∂2w

∂y2
, (2.2c)

where Bo = ρ∗gh∗c
2/Π∗ is a modified Bond number based on the surfactant spreading

pressure. At the liquid-solid interface y = 0, the no-slip and no-penetration conditions
apply, for which

u = v = w = 0 . (2.3)
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The tangential and normal stress balances at the gas-liquid interface y = H(x, z, t) are

∂u

∂y
=
∂σ

∂x
and

∂w

∂y
=
∂σ

∂z
(2.4)

and

p(x, y = H, z, t) = −C∇2H , (2.5)

where the reference pressure outside the liquid film is chosen for convenience to equal
zero. The dimensionless group C ≡ ε2σ∗

m/Π
∗ is related to the inverse of the usual capillary

number Ca = µ∗u∗c/σ
∗
m according to C = ε3/Ca.

The evolution equation for the film thickness H(x, z, t) is determined from the in-
terfacial kinematic condition, which dictates that the gas-liquid interface is a material
surface, i.e. D(y−H)/Dt = 0, where D/Dt denotes the material derivative. This relation
reduces to v = DH/Dt at y = H(x, z, t) where v is the vertical component of the veloc-
ity field V . Integrating the incompressible form of the continuity equation by parts and
using this kinematic condition yields the governing equation for the dimensionless film
height H(x, z, t). The velocity field is substituted into a species mass balance to yield the
governing equation for the dimensionless (insoluble) surfactant concentration Γ(x, z, t).
By applying a linear equation of state relating surface tension to the surfactant surface
concentration, the evolution equations for the film thickness, H(x, z, t), and surfactant
concentration, Γ(x, z, t), in the limit of negligible Bond number Bo = ρ∗gh∗c

2/Π∗, assume
the form (Jensen & Grotberg 1992; Matar & Troian 1998; Fischer 2003)

∂H

∂t
= ∇ ·

[
1

2
H2∇Γ− C

3
H3∇3H

]
, (2.6a)

∂Γ

∂t
= ∇ ·

[
ΓH∇Γ− C

2
ΓH2∇3H +

1

Pes
∇Γ

]
. (2.6b)

Values of the surface Peclet number, Pes ≡ (u∗cL
∗
c)/D∗

s = (Π∗h∗c)/µ
∗D∗

s where D∗
s is the

surfactant surface diffusion coefficient, exceeding approximately 104 provide negligible
contribution to the concentration profiles.

2.1. Base-state solutions

To effect a change in reference frame coincident with the advancing front of the surfactant
monolayer, Jensen & Grotberg (1992) introduced a self-similar coordinate, ξ = x/ta, with
variable transformations:

Ho(x, t) = ho(ξ, t) and Γo(x, t) =
go(ξ, t)

tb
. (2.7)

These transformations reduce (2.6a) and (2.6b) to the forms

t
∂ho
∂t

= aξhoξ +
1

2

(
h2ogoξ

)
ξ
− C

3t4a−1

(
h3ohoξξξ

)
ξ
, (2.8a)

t
∂go
∂t

= aξgoξ + bgo +
(
gohogoξ

)
ξ
− C

2t4a−1

(
goh

2
ohoξξξ

)
ξ
+

tb

Pes
goξξ . (2.8b)

In this current work, the near (x = 0) and far field (x = ∞) boundary conditions applied
to these equations are

hoξ(0, t) = 0 , hoξξξ(0, t) = 0 , and go(0, t) = tb , (2.9a)

ho(∞, t) = 1 , hoξ(∞, t) = 0 , and go(∞, t) = 0 . (2.9b)
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These boundary conditions reflect symmetry of the film thickness about the origin and a
quiescent and surfactant-free liquid film in the far field. Most importantly, however, the
third condition in (2.9a) allows for sustained release of surfactant at the origin.
As first shown by Jensen & Grotberg (1992), there exist self-similar solutions to (2.8a)

and (2.8b) provided the capillary and diffusion terms can be neglected such that C =
1/Pes = 0. Within this approximation, the constraint of self-similarity requires that
a = (1 + α)/3 and b = (1 − 2α)/3. The additional requirement that the total amount
of surfactant disbursed remain bounded in time such that Mtotal(t) =

∫∞
0

Γo(x, t)dx =
Mtα < ∞ where α > 0 establishes that b > 0. Clearly, the case α = 1/2, which yields
a = 1/2 and b = 0, identifies the maximum possible rate of surfactant spreading for
self-similar solutions.
The boundary conditions specified in (2.9a) and (2.9b), however, preclude the possi-

bility of self-similarity even for the case b = 0, which corresponds to affixing the value of
the surfactant concentration at the origin to unity. Furthermore, it is desirable to include
the effects of capillarity and surface tension in order to describe more realistic systems.
In this paper, the system of equations (2.8a) and (2.8b) is therefore solved as an initial
value problem representing the configuration shown in figure 1. The initial conditions
(t = 1) chosen for this study represent an initially flat liquid layer coated with an in-
soluble surfactant monolayer of extent x 6 L∗

c whose concentration is relatively flat but
smoothly decays to zero near the point ξ = 0.5:

ho(ξ, t = 1) = 1 and go(ξ, t = 1) =
1

2
{1− tanh [10(ξ − 0.5)]} . (2.10)

All computations for this study were restricted to the parameter values a = 0.45 and
b = 0 although the analytic derivations provided in the remainder of this paper allow for
other choices as well. The choice b = 0 conveniently reduces the concentration boundary
condition at the origin to unity i.e. go(ξ = 0, t) = 1, which in principle provides for
an infinite source of surfactant to the spreading film. The value of the transformation
constant a specifying the coordinate change ξ = x/ta was estimated by finding values
which led to a good collapse of the numerical solutions for ho and go at late times . The
simple scaling argument shown next based on (2.6a) and (2.6b) indicates why a spreading
monolayer driven solely by Marangoni stresses advances according to x ∼ (HoΓo)

1/2t1/2,
namely

∂Ho

∂t
∼ ∂

∂x

(
H2

oΓox

)
and

∂Γo

∂t
∼ ∂

∂x
(HoΓoΓox) ,

Ho

t
∼ H2

oΓo

x2
and

Γo

t
∼ HoΓ

2
o

x2
,

x ∼ (HoΓo)
1/2 t1/2 and x ∼ (HoΓo)

1/2 t1/2 . (2.11)

Capillary and surface diffusion effects reduce the value of a slightly below 1/2. In this
work, the additional parameter values were held fixed at Pes = 1000 and C = 10−4.
Figure 2 shows the resulting spreading profiles for ho(ξ, t), go(ξ, t) and goξ(ξ, t) for

1 6 t 6 104, Pes = 1000 and C = 10−4. These solutions were obtained using the
method of lines (see Schiesser 1991), which implements second-order centered differences
for the spatial derivatives, and a fully implicit Gear’s method for the time integration
(see Hindmarsh 1983). The non-uniform mesh for integration consisted of 893 gridpoints
over a domain length of 2.5. The density of points in the range 0 6 ξ 6 1 was higher
to obtain better resolution of the region undergoing rapid film thinning near ξ ≈ 0.6 as
well as the flat film near the origin. This mesh utilized grid-spacings of ∆ξ = 10−3 near
ξ = 0.6 and ∆ξ = 3× 10−3 far downstream.
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The non-uniform distribution of surfactant during film spreading generates significant
film thinning centered near the initial monolayer decay point ξ = 0.5 followed down-
stream by an advancing rim whose position correlates with the end of the surfactant
monolayer. The film depression deepens and widens with time. The boundary conditions
for this system generate a concentration gradient goξ that is approximately constant for
an extended region but decays sharply just behind the pinch point ξ ≈ 0.5. The shear
stress in the spreading film also peaks in value near the minimum in film thickness. The
general shape of this shear stress profile and its implications for perturbative growth of
spanwise disturbances constitutes the major focus of this work.

2.2. Linearized disturbance equations

Considered here are two dimensional disturbances to the spreading film with periodicity
in the spanwise direction (z) characterized by wavenumber Q. The disturbance film thick-

ness H̃(x, z, t) and surfactant concentration G̃(x, z, t) undergo a second transformation
similar to that introduced in (2.7) to effect a change in reference frame coincident with
the spreading front, namely

H̃(x, z, t) = Ψ(ξ, t) eiQz and G̃(x, z, t) =
Φ(ξ, t)

tb
eiQz . (2.12)

Linearization of (2.6a) and (2.6b) according to these transformations yields the equation
pair

t
∂Ψ

∂t
= aξΨξ +

1

2

(
h2oΦξ + 2hogoξΨ

)
ξ
− (Qta)2

2
h2oΦ

− C
3t4a−1

[(
h3oΨξξξ + 3h2ohoξξξΨ

)
ξ

− (Qta)2
(
3h2ohoξΨξ + 2h3oΨξξ

)
+ (Qta)4h3oΨ

]
, (2.13a)

t
∂Φ

∂t
= aξΦξ + bΦ+

(
gogoξΨ+ hogoξΦ+ hogoΦξ

)
ξ
− (Qta)2hogoΦ

− C
2t4a−1

{(
goh

2
oΨξξξ + 2gohohoξξξΨ+ h2ohoξξξΦ

)
ξ

− (Qta)
2
[
(goh

2
o)ξΨξ + 2goh

2
oΨξξ

]
+ (Qta)

4
goh

2
oΨ

}
+

tb

Pes

[
Φξξ − (Qta)

2
Φ
]
, (2.13b)

This system of equations is conveniently expressed in matrix form:

t
∂u

∂t
= A(ξ,Q, t) · u , (2.14)

where u = [Ψ, Φ] represents a generalized disturbance vector and A(ξ,Q, t) denotes the
linearized matrix operator. The time-dependence of the matrix A arises both from the
explicit time dependent terms on the right hand side of (2.13a) and (2.13b) as well as
the implicit time dependence inherent in the base-state variables ho(ξ, t) and go(ξ, t).
The boundary conditions used for solution of (2.14) are:

Ψξ(0, t) = 0 , Ψξξξ(0, t) = 0 , and Φξ(0, t) = 0 , (2.15a)

Ψξ(∞, t) = Ψξξξ(∞, t) = 0 and Φ(∞, t) = 0 . (2.15b)

By allowing the slope but not the amplitude of Ψ(ξ, t) to vanish in the far field ξ → ∞, it is
possible to recover bounded spatial oscillations far from the spreading front representative
of capillary wave disturbances. This boundary condition therefore allows for simultaneous
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solution of the continuous spectrum, as previously demonstrated for thin film spreading
by gravity (Ye & Chang 1999) and thin film flow over topological features (Kalliadasis
& Homsy 2001).

3. Eigenspectrum for Stationary Disturbance Operator

The non-uniform spatial and temporal behavior of the evolving base states causes
the generalized disturbance operator A(ξ,Q, t) to be non-normal and non-autonomous
(Davis, Fischer & Troian 2003). As a first approximation, the non-autonomous operator
is reduced to stationary form A(ξ,Q, tc) where the choice tc corresponds to sufficiently
late times when the base-state height and concentration profiles assume quasi self-similar
form. The disturbances are assumed to evolve as a power law in time according to

Ψ(ξ, t) = ψ(ξ) tβ and Φ(ξ, t) = ϕ(ξ) tβ , (3.1)

which reduces (2.14) to

βû = A(tc) · û , (3.2)

where û = [ψ, ϕ] represents the generalized disturbance vector. The assumption of
algebraic growth removes any explicit time-dependence on the left hand side of (2.14);
this assumption, however, is equivalent to seeking solutions with exponential growth
rates expβτ where τ = ln t. The eigenspectrum of A(tc) therefore simply determines the
disturbance growth rates β(Q) within this stationary approximation.
As briefly discussed in §2.2, evaluation of the continuous spectrum identifies oscillatory

disturbances in the far field not possible when decay boundary conditions are specified
as x → ∞. The eigenvalues corresponding to these modes can be obtained here by
considering the limiting behavior of (2.13a) and (2.13b) as ξ → ∞ subject to the far field
constraints ho(ξ → ∞, t) = 1, go(ξ → ∞, t) = 0, Ψξ(ξ → ∞, t) = 0 and Φ(ξ → ∞, t) = 0.
Substitution of these boundary conditions reduces (2.13a) to

βψ = − C
3t4a−1

c

(
ψξξξξ − 2Q2t2ac ψξξ +Q4t4ac ψ

)
. (3.3)

Sinusoidal perturbations of the form ψ ∼ eisξ yield the dispersion relation β(Q) governing
the locus of the essential spectrum,

β = −1

3
Ct1−4a

c s4 − 2

3
Ct1−2a

c Q2s2 − 1

3
CtcQ4 . (3.4)

Within the stationary approximation, this result confirms that all far field capillary wave
disturbances decay as tβ . The maximum growth rate β defined by s = 0, specifies a wave
of constant amplitude ψ(ξ) and growth rate (in the moving frame of reference)

β = −1

3
CtcQ4 . (3.5)

The eigenvalues and eigenvectors of (3.2), which correspond to the disturbance growth
rate β and the (transformed) disturbance film thickness ψ and surfactant concentration
ϕ, were calculated using the sparse eigenvalue solver eigs in Matlab. Figure 3 presents
results for the instantaneous disturbance growth rate β(Q, tc) for 0 6 Q 6 15. For times
tc . 30, the stationary base-states are stable to disturbances of all wavenumbers. For a
large range in tc > 30, the solutions for the Q = 5 and Q = 10 modes maintain a positive
growth rate while disturbances with Q = 15 always decay. The Q = 10 mode achieves
a maximum growth rate at tc ≈ 250 and re-enters the negative half-plane at tc ≈ 650.
The eigenvalues and eigenvectors of A(tc) could not be accurately obtained for tc > 103
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using the eigs function in Matlab 5.3. Numerical problems developed for evaluations
at late times perhaps caused by the inherent non-normality of the disturbance operator.
Since positive branches are evident at much earlier times, it was decided to investigate
in more detail solutions based on the full time dependence of the underlying disturbance
operator, as described in §4.
The growth rate and disturbance amplitudes, ψ(ξ) and ϕ(ξ), for tc = 10 are depicted

in figure 4 for several choices of Q. The growth rates β(Q, tc = 10) shown in figure 4 (a)
all lie in the negative half-plane for Q 6 15. For small values of Q, the largest eigenvalue
is dominated by the branch corresponding to the capillary-like disturbance specified in
(3.5). This mode is designated by the abbreviation CW in figure 4 (b) and the associated
concentration disturbance is shown in figure 4 (c). For wavenumbers Q & 4.9, the largest
eigenvalue corresponds instead to a branch of the discrete spectrum. Interestingly, the
solutions corresponding to the discrete spectrum are highly localized to the region of
rapid film thinning at ξ = 0.6 but their amplitude effectively vanishes everywhere else.
By contrast, solutions of the continuous spectrum representing capillary-like disturbances
peak in amplitude at the position of the leading edge ξ = 1.8 but also maintain smaller
deflections near ξ = 0.6.

Representative base-states beyond t = 30 exhibit substantial film thinning near ξ = 0.6.
If the stationary disturbance operator is evaluated at tc = 100, solutions exhibit positive
growth rates for 1 6 Q 6 13 with a maximum value at Q ≈ 6, as shown in figure
5 (a). For tc = 10, the largest eigenvalue for small wavenumbers corresponds to the
capillary-like disturbance, an example of which is shown in figures 5 (b) (as designated
by the abbreviation CW) and 5 (c). By contrast with the results for tc = 10, these
solutions exhibit a maximum value at the minimum in (base-state) film thickness with
smaller deflections centered about the leading edge. For Q > 1, the largest eigenvalue
corresponds to solutions of the discrete spectrum, and the eigenfunctions, ψ(ξ) and ϕ(ξ),
peak in amplitude only in the vicinity of ξ = 0.6.

From these numerical studies, it is not surprising that the disturbance functions tend to
localize to the region of rapid film thinning (ξ = 0.6) since here the concentration gradient
goξ (or equivalently, the shear stress) exhibits a large spike, as evident in figure 2. This
region is highly susceptible to perturbative growth (Fischer & Troian 2003a,b) provided
the furrow is sufficiently deep. The stationary approximation shows, for example, that
the growth rates corresponding to tc < 30 for the parameter values examined, are strictly
negative until the furrow has had sufficient time to thin and widen.

4. Linearized Transient Growth Analysis

A proper stability analysis of the linearized disturbance operator requires the full time
dependence inherent in (2.14). Farrell & Ioannou (1996b) discuss that disturbance growth
in non-autonomous systems can be monitored by the Lyapunov exponent. This method,
however, is computationally prohibitive for these systems of equations since the time
dependence of the evolving base states does not reduce to simple analytic form (Davis
et al. 2003). As an alternative, the kinetic energy associated with the perturbations can
be monitored with respect to the energy of the underlying base-states (Shen 1961). The
ratio of the relative kinetic energy of the disturbance (d), Ed(t), to that of the reference
base state (b), Eb(t), provides a convenient measure of disturbance growth at time t.
Normalizing the energy of the base-states and disturbances by the corresponding values
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at a reference time ti leads to the amplification ratio

R =

[
Ed(t)

Ed(ti)

]
/

[
Eb(t)

Eb(ti)

]
, (4.1)

which surveys the intensification or dissipation of the relative input energy over a given
time interval. The normalized rate of disturbance growth is then given by Ω = R−1dR/dt.
These measures combine the effects induced by the coupled field variables representing
the film thickness and surfactant concentration in contrast with previous studies (Matar
& Troian 1999a). The kinetic energies Eb(t) and Ed(t) averaged over a period λ = 2π/Q
are defined by

Eb ≡
1

2λ

∫ λ

0

∫ ∞

0

|⟨Vo⟩|2(ξ, t) dξ dz , (4.2a)

Ed ≡ 1

2λ

∫ λ

0

∫ ∞

0

|⟨Ṽ ⟩|
2
(ξ, t) dξ dz . (4.2b)

The angular brackets denote the height averaged flow speed. The magnitude of the base-
state velocity field is denoted by |⟨Vo⟩|, and that of the disturbance velocity field by

|⟨Ṽ ⟩|. In particular, the height-averaged base-state streamwise and transverse flow fields,
respectively, are given by

⟨uo⟩ = − 1

2ta+b
hogoξ +

C
3t3a

h2ohoξξξ , (4.3a)

⟨wo⟩ = 0 , (4.3b)

while the corresponding flow speed for the averaged disturbance fields are given by

⟨ũ⟩ =
[
− 1

2ta+b

(
hoϕξ + goξψ

)
+

C
3t3a

ho
(
hoψξξξ + 2hoξξξψ − t2aQ2hoψξ

)]
eiQz ,(4.4a)

⟨w̃⟩ =
[
− 1

2ta
hoϕ+

C
3t2a

h2o
(
ψξξ − t2aQ2ψ

)]
iQeiQz . (4.4b)

By retaining the full time dependence of the base state solutions as well as the distur-
bance matrix, the stability analysis reduces to an initial value problem. The identification
of “optimal disturbances”, as has been demonstrated for certain coating flows which sup-
port time independent traveling wave base states (Davis & Troian 2003; Davis, Fischer
& Troian 2003), is not possible for the system of equations shown here.

4.1. Eigenvector disturbances

For the parameter set of choice, the results of the stationary (modal) approximation in
§3 indicate that film spreading supports positive disturbance growth rates for tc = 100
but not tc = 10. Further insight into film stability can be gained by evaluating the
amplification ratio R(t) resulting from specific initial film shapes and concentration pro-
files representing the eigenfunctions identified by the stationary approximation. In other
words, the eigenfunction solutions with maximum growth rate β (examples of which are
shown in figures 4 and 5) are deliberately applied to the spreading film and allowed to
evolve according to (3.2), where A = A(ti) and where ti is set equal either to tc = 10 or
tc = 100. Figures 6a and b shows results of the computed amplification ratios R(t) for
ti = 10 and ti = 100, respectively, and 5 6 Q 6 25. In figure 6 (a), the smallest wavenum-
ber (Q = 5) undergoes the largest relative amplification. The initial amplification is small
but by t ≈ 103 attains a value exceeding 105. The Q = 10 and Q = 15 modes undergo
an initial stabilizing response manifested by a decrease in R(t) but these too undergo
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substantial amplification for t > 100. By contrast, the smallest wavelength disturbance,
Q = 25, suffers progressive decay. If instead the selected perturbations corresponding to
ti = tc = 100 are applied to the spreading film, the modes Q = 5 and 10 amplify immedi-
ately. After a brief stabilizing period, the Q = 15 mode also attains an amplification ratio
of about 200 by t = 104. Similar to figure 6 (a), the smallest wavelength disturbance,
Q = 25, again suffers progressive decay.
Such large amplification ratios coincide with large increases in the amplitudes of the

disturbance functions Ψ(ξ, t) and Φ(ξ, t). For example, figure 7 shows the evolution of
perturbations applied at ti = 100 for Q = 5. These disturbances strongly localize to the
region of high shear stress (spike in goξ) because of the rapid film thinning demonstrated

by the base state. The superposition h(ξ, z, t) = ho(ξ, t) + δ̃Ψ(ξ, t) sin(Qz) is shown in
figure 8 for Q = 5, t = 500, and δ̃ = 0.01. In this example, the spanwise disturbances
generate corrugations in the spreading layer just behind the thinnest portion of the film.

4.2. Localized Perturbations

Gaussian perturbations of the form

Ψ(ξ, t = 1) = Φ(ξ, t = 1) = e−50 (ξ−ξs)
2

. (4.5)

were also examined in order to determine what is the influence of the position ξs on
disturbance amplification. Without loss in generality, the amplitudes Ψ(ξ, t = 1) and
Φ(ξ, t = 1) are set to unity since equations (2.13a) and (2.13b) are linear. In a previous
study (Fischer & Troian 2003a; Fischer 2003), it was shown that disturbances convecting
past the advancing rim of the film experience a transient boost in amplitude (in the
moving reference frame) but rapid decay once these reach the furrow upstream. It was
also noted that disturbances initially situated further from the advancing front undergo
larger amplification since the waveform corresponding to the base state has additional
time to develop a thicker rim. The results of the amplification studies in figure 9 for
0 6 Q 6 15 and initial placements ξs = 1.0 and 2.0 confirm a similar view. The onset
time for the initial boost in amplitude is delayed with increasing ξs since the disturbance
must travel upstream (in the moving reference frame) a longer distance before contacting
the rim. More importantly, however, these results show that amplification resumes as the
disturbances localize within the furrow upstream although the amplification ratio for
these types of Gaussian perturbations is overall still small.

5. Model Reduction and Physical Mechanism Responsible for
Unstable Spreading

The physical understanding resulting from the data in §3 and §4 can be summarized
as follows. For sustained growth of disturbances and asymptotic instability, there needs
to develop a sufficiently deep and wide furrow in the upstream region, as indicated in
figure 2 (a). This process leas to a steep decay in the value of goξ, or equivalently a
steep increase in the value of the shear stress −goξ, just upstream of the minimum in
film thickness, as shown in figure 2 (c). It is this important feature that is approximated
below within the reduced model - namely, the response of an initially flat film to a step
jump in shear stress in a reference frame moving with the “inner” rapidly thinned region.
The surface flow speed also exhibits a step increase near the furrow as evident in figure

10 for t = 104. The non-zero flow speed at ξ = 0 indicates the pull of liquid away from the
origin. This non-vanishing shear stress is caused by the continuous supply of surfactant
at the origin where the concentration is held fixed. This behavior is not observed in
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model studies of the spread of a small and finite mass of surfactant, where the shear
stress at the origin vanishes identically (Fischer & Troian 2003a). As with the behavior
of the evolving shear stress, the surface speed increases slowly with ξ for 0 6 ξ . 0.5 but
undergoes a significant step increase near the pinch point [see figure 2 (a)].
As discussed in §4, the linearized disturbance operator which retains the complete time

dependence is non-autonomous and non-normal. However, it is possible to develop an au-
tonomous disturbance matrix by appealing to a reduced model which focuses exclusively
on the dynamics in the inner region of the flow situated just upstream of the furrow, as
indicated in figure 11. Familiarity with a simpler class of lubrication flows describing film
spreading by constant thermocapillary (Troian et al. 1990; Davis & Troian 2003; Davis
et al. 2003), gravitational (Huppert 1982; Bertozzi & Brenner 1997), or centrifugal forces
(Melo, Joanny & Fauve 1989; Fraysse & Homsy 1994) suggests advantages to be gained
by mapping the inner region of the surfactant problem to alternative flows also described
by non-normal operators.
The fingering patterns observed in these other coating flows, however, in no way re-

semble the arterial fingering patterns commonly observed in surfactant driven spreading
where there occurs finger branching and tip-splitting (Fischer, Darhuber & Troian 2001).
Instead the pressure distribution behind the moving contact line of a liquid film driven
to spread across a dry substrate causes a recirculating flow and distinct bulge at the
leading edge. This bulge, sometimes called a capillary rim, originates with the balance
between the driving force for spreading, capillary and viscous forces. This balance es-
tablishes a characteristic length scale ℓ = houter/Ca

1/3 (Troian, Herbolzheimer & Safran
1990; Kataoka & Troian 1997) where houter denotes the film thickness in the (upstream)
outer region. The fingering instability in such systems resembles a lateral breakup of
the capillary rim which generates an advancing parallel array of flowing rivulets, as ob-
served in wet paint streaming down a vertical wall. The wavelength corresponding to the
rivulet spacing is proportional to the dynamic capillary length ℓ. As discussed previously
(Fischer & Troian 2003a; Fischer 2003), however, the dendritic instability observed in
surfactant coated films develops specifically in the rapidly thinned region and not at the
leading edge of the film. Nonetheless, the model reduction described below helps isolate
the physical mechanism responsible for unstable flow in Marangoni driven spreading.
Conceptually, then, the inner region sketched in figure 11 corresponds to the region of
the film shown in figure 2 where the shear stress undergoes a step increase just upstream
of the pinch point.

5.1. Governing equations

It proves useful for this part of the study to return to the dimensional form of the
evolution equations for the film thickness H∗(x, z, t∗) and surfactant equation Γ∗(x, z, t∗)
describing Marangoni driven spreading, namely

∂H∗

∂t∗
+ ∇ ·

[
H∗2

2µ∗ ∇σ∗ +
σ

3µ∗H
∗3∇3H∗

]
= 0 , (5.1a)

∂Γ∗

∂t∗
+ ∇ ·

[
H∗Γ∗

µ∗ ∇σ∗ +
σ

2µ∗Γ
∗H∗2∇3H∗

]
= 0 , (5.1b)

where surface diffusion is neglected and the surface tension associated with capillary
effects is replaced by the value of the monolayer coated film σ∗

m.
To determine the proper scaling relationships within the inner region, all streamwise

and transverse coordinate values are scaled by the characteristic length ℓ∗c (whose value
is determined below) and the film thickness by the initial film thickness h∗c . The driving
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stress ∇σ∗ is scaled upon a maximum value G∗
c representative of this region and the

characteristic flow speed and convective time scales are given by u∗c = h∗cG
∗
c/(2µ

∗) and
t∗c = ℓ∗c/u

∗
c , respectively. The extent of the inner region can then be determined by

the balance in equation (5.1a) between the Marangoni and capillary fluxes such that

ℓ∗c = 3

√
2σ∗

mh
∗
c
2/(3G∗

c) = h∗c (3Ca)−1/3 where Ca = µ∗u∗c/σ
∗
m. These scaling relations for

the inner region therefore reduce (5.1a) and (5.1b) to the form

∂H

∂t
+ ∇ ·

[
H2∇σ +H3∇3H

]
= 0 , (5.2a)

∂Γ

∂t
+ ∇ ·

[
2HΓ∇σ +

3

2
ΓH2∇3H

]
= 0 . (5.2b)

The parameter values Γ = 0 and ∇σ equal to a constant describe film spreading by a
constant thermocapillary force, as examined in detail elsewhere (Kataoka & Troian 1997,
1998; Davis, Fischer & Troian 2003).

5.2. Base-state solutions for prescribed shear stress distributions

The most important aspect of this model reduction consists of decoupling (5.2a) and
(5.2b) by solving (5.2a) subject to a prescribed shear stress profile of the form

σx → 1 as x→ −∞ (upstream) and (5.3a)

σx → G as x→ +∞ (downstream) , (5.3b)

where the constant G > 0. This allows identification of traveling wave solutions for the
base state film thickness in a reference frame moving at a constant speed c situated in
the inner region. The transformation is given by ξ = x−ct. In this study, the step change
in shear stress was modeled according to

σξ = 1 + (G− 1)

[
0.5 +

1

π
arctan

(
ξ

δ

)]
. (5.4)

This distribution includes three interesting cases depending on the range of values for
G. Choices such thatG > 1 mimic a step jump in shear stress as observed in the surfactant
spreading problem. The choice G = 1, for which the shear stress is a constant over the
entire (inner) spatial domain, describes the case of thermocapillary spreading (Kataoka
& Troian 1997, 1998; Davis, Fischer & Troian 2003). Finally, choices corresponding to
G < 1 describing a step-drop in shear stress, are useful in describing the behavior at
the leading edge of the spreading monolayer [see figure 2 (c)] demonstrated within the
complete model to be asymptotically stable (Fischer 2003).
The evolution equation describing the film thickness in rectilinear geometry is then

given by

choξ −
(
σξh

2
o + h3ohoξξξ

)
ξ
= 0 , (5.5)

(where the subscript ξ indicates differentiation) subject to the boundary conditions

ho → 1 and hoξξξ → 0 as ξ → −∞ (upstream) (5.6a)

ho → h∞ and hoξξξ → 0 as ξ → +∞ (downstream) . (5.6b)

Integration of (5.5) subject to (5.6a) and (5.6b), as well as the far field limits given by
(5.3a) and (5.3a), establish a third-order ordinary differential equation for the base state
film thickness

hoξξξ =
c(ho − 1)− σξh

2
o + 1

h3o
, (5.7)
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where the characteristic speed of the inner region is given by

c =
1−Gh2∞
1− h∞

. (5.8)

Solution of (5.7) proceeds by conversion to three first-order equations subsequently
solved as initial value problems. This method of solution is commonly used for solution of
free-surface lubrication flows. The starting value for integration at ξ → −∞ is obtained
by linearizing (5.7) about the asymptotic value ho → 1. The first-order term in this
expansion in given by

h1 = c1 exp
[
(c− 2)1/3ξ

]
+ c2 exp

[
−1

2
(c− 2)1/3(1 + i

√
3)ξ

]
+ c3 exp

[
1

2
(c− 2)1/3(−1 + i

√
3)ξ

]
, (5.9)

In order for this expansion to remain bounded in the limit ξ → −∞, the asymptotic film
thickness required for forward integration must satisfy the following constraints based on
the wave speed c:

ho = 1 + ϵ̃ exp
[
(c− 2)1/3ξ

]
for c > 2 (5.10a)

ho = 1 + ϵ̃ exp

[
−1

2
(c− 2)1/3ξ

]
cos

[√
3

2
(c− 2)1/3ξ

]
for c < 2 (5.10b)

ho = 1 + ϵ̃ for c = 2 , (5.10c)

where ϵ̃ ≪ 1 is the linearization parameter (not to be confused with the lubrication
parameter ϵ. The complete solution for ho is then found by forward integration (ξ → +∞)
and the parameter ϵ̃ is adjusted until the boundary conditions in (5.6b) are satisfied.

Figure 12 (a) shows examples of prescribed distributions in surface shear stress for three
values of G and δ = 0.1. Figure 12 (b) shows the corresponding traveling wave solutions
for h∞ = 1/6. (These steady states solutions require that the liquid flux be constant
throughout the domain; as such, only certain values of h∞ satisfy this requirement.) For
each wave shown, the wave speed c < 2. These solutions are characterized by a distinct
bulge just behind the location of the step change in shear stress where the maximum
height increases with decreasing values of G. Smaller values of G generate higher wave
speeds c which causes the liquid flux and therefore the bulge height to increase also.

For G = 1 (as in thermocapillary flow), the wave speed reduces to the value c = 1+h∞,
which increases linearly with the asymptotic value h∞. For h∞ < 1, the wave speed c < 2
and a characteristic bulge forms. For G = 2, the wave speed is a parabolic function of
h∞ and two distinct values of the asymptotic film thickness h∞ can generate the same
positive wave speed for h∞ < 2−1/2. The second solution for G = 2 and h∞ = 1/6 is
shown in figure 13. In contrast to the solution shown in figure 12 (b), here the upstream
portion of the film exhibits some weak oscillations. The choice G = 0.5 generates a wave
speed that monotonically increases h∞. Provided h∞ < 2/3, the wave speed is less than
2 which leads a bulge in the traveling wave.

5.3. Disturbance equation for prescribed shear stress distribution

Based on this reduced model, the evolution equation describing the disturbed film thick-
ness H̃(x, z, t) = Ψ(ξ, t)eiQz, where the spanwise wavenumber Q is scaled upon the inner
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length scale ℓ∗c , is given by

∂Ψ

∂t
=

∂

∂ξ

[
cΨ− 2σξhoΨ− h3oΨξξξ − 3h2ohoξξξΨ+Q2h3oΨξ

]
+Q2h3oΨξξ−Q4h3oΨ (5.11)

subject to the boundary conditions

Ψξ = Ψξξξ = 0 as ξ → ±∞ . (5.12)

The stress profile σξ is given by (5.4).
The equation describing the asymptotic behavior of Ψ(ξ, t) as ξ → −∞ can be obtained

by applying the boundary conditions in (5.6a):

∂Ψ

∂t
= −Ψξξξξ + 2Q2Ψξξ −Q4Ψ . (5.13)

The substitution Ψ(ξ, t) ∼ eβt+isξ yields an expression for the disturbance growth rate

β(Q) = −s4 − 2Q2s2 −Q4 . (5.14)

Spatially uniform disturbances in the upstream far field such that s = 0 exhibit negative
growth rates

β = −Q4 . (5.15)

In the opposite limit as ξ → +∞, the evolution equation derived from the boundary
conditions in (5.6b) is given by

∂Ψ

∂t
= −h3∞Ψξξξξ + 2Q2h3∞Ψξξ −Q4h3∞Ψ , (5.16)

which for disturbances of the form Ψ(ξ, t) ∼ eβt+isξ, yields the expression for the growth
rate

β = −h3∞s4 − 2Q2h3∞s
2 − h3∞Q

4 . (5.17)

Spatially uniform disturbances in the downstream far field such that s = 0 also exhibit
negative growth rates according to

β = −h3∞Q4 . (5.18)

For h∞ 6 1, the values (5.18) are less negative than (5.15) and will therefore dominate
the continuous eigenspectrum.

5.4. Modal disturbance analysis

General perturbations of the separated form Ψ(ξ, t) = ψ(ξ) eβt lead to a disturbance
function for the film thickness described by the matrix equation

βu = A · u , (5.19)

where u is a vector consisting of the values of the disturbance ψ at discrete points
of the spatial domain (−∞,+∞). The disturbance operator A is autonomous in the
moving frame of reference defined by ξ = x − ct but non-normal due to the spatial
inhomogeneity of the traveling base-state solution (Davis, Fischer & Troian 2003). In
§5.5 is presented a linear stability analysis appropriate for non-normal operators. In this
section, the eigenvalues and eigenfunctions corresponding to (5.19) are evaluated and
discussed. Solutions to (5.19) were computed using the sparse matrix eigenvalue solver
eigs in Matlab 5.3.
The results in figure 14 (a) show the computed growth rates β(Q) corresponding to the

base-states ho(ξ) in figure 12. In all three cases shown, there is a band of wavenumbers
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for which the base states are asymptotically unstable in the moving reference frame. As
G increases, the range in Q for instability as well as the maximum growth rate increase
despite the fact that the bulge height in the base state profile decreases with increasing
G. The results for G = 1 correspond exactly to previous solutions investigated by Troian
et al. (1990) and Kataoka & Troian (1997, 1998) for 0.01 6 h∞ 6 0.9 where β > 0 for
0 < Q . 0.55 with a most unstable wavelength Qmax ≈ 0.35. The values in table 1 clearly
show that as the value of the shear stress ahead of the furrow increases from 0.5 to 2.0,
so too does the maximum growth rate βmax and the corresponding wavenumber Qmax

for h∞ = 1/6. Furthermore, the eigenspectrum is dominated by the discrete spectrum
for which the leading eigenfunctions ψ(ξ) decay as ξ → ±∞, as shown in figure 14 (b).
These solutions have been normalized such that (

∫∞
0
ψ2dξ)1/2 = 1. All three solutions

exhibit a strong peak localized to the bulge region of the corresponding base-states. The
peak magnitudes in ψ increase with increasing values of the shear stress G.
It has been previously noted (Troian, Herbolzheimer & Safran 1990) that the eigen-

function corresponding to the neutrally stable solution ψ[β(Q = 0) = 0] is linearly pro-
portional to hoξ for films driven to spread by spatially uniform body or shear forces. This
is a consequence of the translational invariance of the disturbance operator L0 which is
independent of ξ. In this study, the prescribed jump in shear stress described by (5.4) for
G ̸= 1 imposes a spatially non-uniform stress. As shown next, the neutrally stable eigen-
function therefore violates this condition of proportionality. In the limit β(Q = 0) = 0,
(5.11) reduces to

0 =
∂

∂ξ

[
cψ − 2σξhoψ − h3oψξξξ − 3h2ohoξξξψ

]
=

[(
−2σξhoξ − 2σξξho

)
+ (c− 2σξho)

∂

∂ξ
− 3h2ohoξ

∂3

∂ξ3
− h3o

∂4

∂ξ4

]
ψ , (5.20)

= L0ψ . (5.21)

where L0 is the linearized disturbance operator. Substitution of the relations ψ(ξ) ∝ hoξ
and (5.7) into (5.21) yields

0 = −2σξho
2
ξ−4σξξhohoξ−σξξξh2o+(c− 2σξho)hoξξ−3h2ohoξhoξξξξ−h3ohoξξξξξ . (5.22)

When σξ is a constant throughout the spatial domain (as for the case G = 1), σξξ =
σξξξ = 0, and (5.22) reduces to

0 = chohoξξ − 3h2ohoξhoξξξξ − h3ohoξξξξξ = L0hoξ . (5.23)

confirming ψ(ξ) ∝ hoξ for Q = 0. For choices G = 0.5 or 2.0 in (5.4), the neutrally stable
modes differ substantially from hoξ, as shown in figure 15.

5.5. Non-modal disturbance analysis

The linearized operator described by (5.19) is non-normal. It is known that nonorthog-
onality of modes in a non-normal system may lead to transient growth and disturbance
amplification far in excess of that anticipated from the decay rates given by the eigen-
values of the operator (Farrell & Ioannou 1996a). The growth rates predicted from a
normal mode analysis of the non-normal operator coincide with its eigenvalues only in
the limit t → ∞. At short or intermediate times, the maximum disturbance amplifica-
tion is instead described by ln ∥ exp(At)∥, where ∥ · ∥ is evaluated in the L2 norm. A
more complete description of the fundamentals underlying a transient growth analysis of
non-normal operators pertinent to free surface lubrication flows, as well as discussion of
optimal disturbances, can be found in Davis et al. (2003). For this study, the amplification
ratios were computed using the expm function in Matlab 5.3.
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Figure 16 shows the evolution of ln ∥ exp(At)∥ for optimal disturbances applied to
the base states shown in figure 12. These disturbances generate the maximum possible
amplification at time t. For the parameter values shown, the amplification shows a brief
period of non-normal growth which rapidly transitions to the value ln ∥ exp(λmaxt)∥ =
λmaxt where λmax is the leading eigenvalue of A. As G increases, the amplification at early
times also increases thereby shifting the transition to the solution λmaxt. The fact that
disturbance amplification at early times never exceeds the asymptotic value as t → ∞
suggests that the disturbance operator is only slightly non-normal. It is concluded from
this example that the mechanism for instability proposed, which is directly related to a
step increase in shear stress, is fundamentally a linear mechanism.
Unfortunately, the lack of quantitative experimental data on Marangoni driven fin-

gering patterns precludes direct comparison to these predictions of the most unstable
wavelength and the onset times for instability. Assuming that significant disturbance
growth sets in at about a (dimensionless) time of t ≈ 30, and extracting values from
experiments for h∗c , Π

∗, µ∗, and L∗
c (Troian et al. 1989; Frank & Garoff 1995; He &

Ketterson 1995; Fischer et al. 2001; Cachile et al. 2002) allows prediction of onset times
for fingering which range roughly from 0.03 - 300 s. These predicted time scales for onset
of instability are much more in line with experimental observations than all previous
estimates based on sustained release according to t1/2 (Fischer & Troian 2003b).

6. Conclusion

The analysis presented in this paper is designed to explore the fundamental cause
of a dendritic fingering instability so commonly observed in thin viscous films driven to
spread by a non-uniform distribution of surface active material at the gas-liquid interface.
Experiments show that the spanwise instability nucleates and grows near the minimum
in film thickness. Numerical studies indicate that this region is also characterized by
an evolving spike in shear stress. Prior studies that have focused on a small and finite
total mass of surfactant indicate that film spreading is asymptotically stable except
possibly when van der Waals interactions are included. Recent studies suggest, however,
that the instability triggered by van der Waals interactions is better described as a
rupture instability and therefore very different than those observed in Marangoni driven
systems. A more recent transient growth analysis based on sustained surfactant release
according to t1/2 has identified asymptotically unstable modes localized to the relevant
thinned region but the onset times appear to be several orders of magnitude larger than
experimental observations.
The current work examines the consequences of an infinite supply of surfactant to the

spreading film by assuming a concentration distribution whose value at the origin is held
fixed in time. The non-uniform spatial and temporal behavior of the evolving base states
causes the generalized disturbance operator to be non-normal and non-autonomous. Both
an approximate stability analysis which reduces the non-autonomous operator to au-
tonomous form, as well as the complete time dependent analysis, clearly show positive
perturbative growth of spanwise disturbances which localize to the region of large varia-
tion in shear stress. These disturbances undergo sustained amplification and asymptotic
instability.
In order to identify the fundamental cause of instability, a simplified linear stability

analysis is introduced which focuses exclusively on the behavior of a uniform thin film
subject to a prescribed step change in shear stress. This model is shown to support travel-
ing wave solutions which for a step increase (decrease) in shear stress are asymptotically
unstable (stable). While only a select group of stress distribution functions are exam-
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ined, it seems likely from these studies that the possibility of linearly unstable modes in
thin films subject to a step increase in shear stress may signal a new type of interfacial
instability.
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Table 1. Results of the modal analysis for the most unstable wavenumber Qmax and growth
rate β(Qmax) within the reduced model for representative values of the upstream shear stress
G, h∞ = 1/6 and δ = 0.1, as defined in the text.

G Qmax βmax

0.5 0.20 0.007
1.0 0.35 0.037
2.0 0.50 0.130
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Figure 1. Schematic diagram of the initial configuration for film spreading in rectilinear geom-
etry. A viscous film of initial thickness h∗

c , viscosity µ
∗ and density ρ∗ is partially coated from

−L∗
c 6 x 6 L∗

c by an insoluble surfactant monolayer. The initial concentration distribution is
given by Γ∗

m, which decays to zero beyond ±L∗
c . The surface tension of the coated film is reduced

from σ∗
o to σ∗

m. The maximum spreading pressure responsible for film mobilization is given by
Π∗ = σ∗

o −σ∗
m. In this study, the surfactant concentration at the origin is held fixed at the value

Γ∗
m to simulate an infinite supply of surfactant to the spreading film.
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Figure 2. Numerical solutions of the non-dimensional base states for (a) film thickness ho, (b)
surfactant concentration go and (c) concentration gradient goξ (also equivalent to the negative
value of the shear stress) for times ranging from 10 to 104. Additional parameter values are
a = 0.45, b = 0, Pes = 1000 and C = 10−4.

Figure 3. Numerical solution of the instantaneous growth rate, β(Q, tc) for 0 6 Q 6 15. The
times, tc, represent the fixed time at which the eigenfunctions and eigenvalues of the linearized
disturbance operator are evaluated.
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β

Figure 4. Numerical solutions of disturbance (a) growth rate β(Q), (b) film thickness ψ(ξ),
and (c) concentration profile ϕ(ξ) for tc = 10. The dashed line in (a) represents the continuous
mode [capillary-like wave (CW)] solution given by (3.5) and the dotted line denotes solutions
corresponding to the discrete spectrum. Other parameter values are Pes = 1000 and C = 10−4.
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Figure 5. Numerical solutions of disturbance (a) growth rate β(Q), (b) film thickness ψ(ξ),
and (c) concentration profile ϕ(ξ) for tc = 100. The dashed line in (a) represents the continuous
mode [capillary-like wave (CW)] solution given by (3.5) and the dotted line denotes solutions
corresponding to the discrete spectrum. Other parameter values are Pes = 1000 and C = 10−4.
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Figure 6. Numerical solutions of the normalized disturbance amplification ratio for 5 6 Q 6 25.
The perturbations are prescribed at times (a) ti = 10 and (b) ti = 100. Other parameter values
are Pes = 1000 and C = 10−4.
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Figure 7. Plots of the evolution of (a) disturbance film thickness Ψ and (b) disturbance surface
concentration Φ for Q = 1 and ti = 100. Other parameter values are Pes = 1000 and C = 10−4.
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Figure 8. Film thickness profile h(ξ, z, t) including disturbance at t = 500 for Q = 5 and

δ̃ = 0.01. Significant corrugations appear just upstream of the minimum in film thickness. Other
parameter values are Pes = 1000 and C = 10−4.

Figure 9. Evolution of disturbance amplification R for gaussian perturbations initially
situated at (a) ξs = 1.0 and (b) ξs = 2.0 as a function increasing wavenumber Q.
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Figure 10. Base-state surface flow speed at t = 104 for the concentration profile and boundary
conditions specified in the text. Other parameter values are Pes = 1000 and C = 10−4. There is
evident a step increase in speed near the region of maximum film thinning and a step down in
film speed at the leading edge of the surfactant monolayer which joins the undisturbed film.

leading

  edge

 inner

region

Figure 11. Schematic diagram showing two important regimes in the evolving film thickness
profile. These include an inner region situated near the pinch point where the film demonstrates
a sharp drop in film thickness and a bulge at the leading edge which signals the transition
between the (surfactant) coated and un-coated portions of the film.
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Figure 12. (a) Prescribed shear stress distribution σξ which demonstrates a step change in
value near ξ = 0. (b) Solution of the base-state film thickness ho(ξ) for h∞ = 1/6, δ = 0.1 and
G = 0.5, 1.0 and 2.0 within the reduced model.

G=2.0

Figure 13. A second base-state solution ho(ξ) for h∞ = 1/6, δ = 0.1 and G = 2.0 within the
reduced model.
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Figure 14. Solutions for the reduced model corresponding to (a) the eigenvalues β(Q)
and (b) eigenfunctions with maximum growth rate ψ(Qmax) for h∞ = 1/6, δ = 0.1 and
G = 0.5, 1.0 and 2.0.

Figure 15. Comparison between the shapes of the neutrally stable mode and hoξ for (a)
G = 0.5 and (b) G = 2.0 with h∞ = 1/6 and δ = 0.1.
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Figure 16. Evolution of amplification curves corresponding to optimal disturbances wavenum-
ber perturbations for (a) G = 0.5, (b) G = 1.0, and (c) G = 2.0 as a function of increasing
wavenumber Q for h∞ = 1/6 and δ = 0.1.


