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Abstract. Marangoni and thermocapillary driven systems represent two classes of
flows in which the variation in surface tension at the gas-liquid interface can generate
spontaneously spreading films. This article considers the linear stability of such flows
within the lubrication approximation. Since the base state or unperturbed solutions in
both cases involve spatially inhomogeneous profiles, the linearized disturbance opera-
tors are non-normal and the stability analysis must therefore be generalized beyond a
simple modal decomposition. The utility of this type of analysis is first demonstrated
for autonomous operators by an example involving thermocapillary spreading subject
to a constant thermal gradient. Extension of this non-modal analysis to systems involv-
ing non-autonomous operators is demonstrated by an example of Marangoni spreading
induced by film contact with an insoluble surfactant monolayer.

1 Introduction

The growing focus on microscale flow phenomena and their extension to mi-
crofluidic devices has generated renewed interest in interfacial hydrodynamics
and especially in free surface lubrication flows, i.e., flows for which the height
to length ratio is exceedingly small. In this limit, liquid systems can sustain
an enormous surface to volume ratio. Forces arising from van der Waals in-
teractions, capillarity, thermocapillarity or Marangoni stresses, all of which are
usually neglected in large scale flows, dominate the spreading behavior.

Coating flows constitute an important branch of lubrication hydrodynamics
in which thin liquid films are made to coat a dry or prewetted substrate by use
of body or shear forces. Gravity, centrifugation, or an external gas stream pro-
vide the driving forces for falling [18], spin-coated [12,31] or so-called “blown”
films [25]. Spreading can also be induced through modulation of the surface ten-
sion, which decreases with temperature or surfactant concentration. Gradients
in surface tension generate shear stresses at a liquid-vapor interface to produce
thermocapillary [26] or Marangoni driven flow [41].

In recent years, numerous experiments have shown that, in many cases, there
exists some parameter range for which the liquid film develops instabilities that
ultimately destroy the film uniformity. Films driven by gravity, centrifugation or
a constant shear stress are observed to develop rivulets at the spreading front
as shown in Fig. 1. Multiple unstable fronts can develop in spreading induced
by gradients in surfactant concentration, as demonstrated by the images of the
cellular and fractal-like instabilities in Fig. 2. The use of surfactants typically
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Fig. 1. Thermocapillary spreading of a thin silicone oil film (polydimethyl siloxane)
on a differentially heated silicon wafer for τ = 0.79 dyn/cm2. Spreading proceeds from
warmer to cooler regions of the substrate. Optical interference fringes indicate a film
thickness hc ≈ 0.56µm. The time interval between images is 10 min.[23]

a b c

Fig. 2. a Spreading of a 5 cSt silicone oil (PDMS) droplet on a silicon substrate
prewetted with a 0.5 ± 0.1µm film of pure glycerol 3388 sec after deposition (field
of view=9.9mm). b Magnified view of a cellular pattern which develops at the border
of the spreading droplet (field of view=8.1 mm). c Magnified view of a dendritic pattern
at the drop center (field of view=2.5 mm). The images do not correspond to the same
droplet. Courtesy of Dr. A.A. Darhuber, MREL, Princeton University

results in the ramified structures shown in Fig. 3, which are produced by repeated
branching and tip-splitting of moving fronts [42].

This article focuses on thin Newtonian films driven to spread cross a smooth,
homogeneous surface through modulation of the liquid surface tension γ, al-
though the analysis can be extended to any of the other flows mentioned above.
This modulation, which can be enforced via thermal or concentration gradients,
creates shear stresses τ = ∇γ at the gas-liquid interface that drive liquid from
regions of low to high surface tension. In what follows, the linear stability of two
systems will be considered: (i) thermocapillary spreading in which a constant
shear stress is applied to a liquid film by differentially heating the supporting
substrate and (ii) Marangoni spreading in which a non-uniform distribution of
insoluble surfactant creates a non-constant shear stress that drives the spreading
process.

Within the lubrication approximation [6], the simplified Navier-Stokes equa-
tions can be integrated, and the velocity in the film can be found directly from
the liquid height profile. The kinematic boundary condition, v · n̂ = Dh̃/Dt,
where D/Dt denotes the material derivative and v the fluid velocity, dictates
that the normal component of the surface velocity equal the speed of the gas-
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(a) (b)

Fig. 3. Spreading of a glycerol droplet containing sodium dodecyl sulfate (surfactant)
on a silicon wafer prewetted with a uniform glycerol layer formed by spin coating
at 2000 rpm for 50s at 42% relative humidity. The images show two representative
patterns a 92 min and b 192 min after droplet deposition (field of view = 9.9 mm).
The spreading proceeds toward the top of each panel. The black and white contrast is
caused by thin film optical interference fringes. Courtesy of Dr. A.A. Darhuber, MREL,
Princeton University

liquid interface. Integrating the incompressible form of the continuity equation
by parts and using this kinematic condition yields an equation for the film height,
h̃(x, t) [32]:

∂h̃

∂t̃
+∇ ·

∫ h̃

0
v dz =

∂h̃

∂t̃
+∇ ·

[
h̃2∇γ

2µ
− h̃3

3µ
∇p
]

= 0, (1)

where ẑ is directed normal to the solid substrate. The term proportional to ∇γ
describes the contribution to the liquid flux from thermocapillary or Marangoni
stresses. The pressure gradient in the third term ∇p ≡ ∇(−γ∇2h̃ + A0h̃

−3)
derives from capillary forces due to interfacial curvature for |∇h̃|2 � 1 and
attractive van der Waals interactions where Ao is the Hamaker constant. In
thermocapillary driven systems, the viscosity µ of the liquid can vary spatially
but variations in liquid density are typically much smaller and can be ignored.
Other terms accounting for hydrostatic or streamwise gravitational acceleration,
or terms arising from boundary conditions used to remove the well known stress
singularity at a moving contact line [17], can easily be incorporated into (1). For
example, the governing equation in Sect. 2 contains an additional term reflecting
a slip boundary condition at the liquid-solid interface. For systems involving sur-
factant transport, the equation for h̃(x, t) must be coupled to a second equation
describing the convection and diffusion of surfactant at the air-liquid interface.
This coupling gives rise to a space- and time-dependent shear stress as discussed
in Sect. 3.

Depending on the forces used to drive the spreading, the base state solutions,
h̃(x, t), assume shapes ranging from constant traveling waves, to self-similar
profiles to complex time-dependent waveforms. In all cases, this spatial inhomo-
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geneity produces linearized disturbance operators A which are non-normal and
therefore do not commute with their adjoint, i.e. AA† 	= A†A. While the stabil-
ity of a normal system for all times t is strictly governed by the eigenspectrum
of A, this is not necessarily the case for non-normal systems. It is now widely
recognized that the modal spectrum for non-normal operators only determines
the asymptotic stability as t→∞ because the eigenfunctions of such operators
are not orthogonal. Eigenvectors separated by a small angle are nearly linearly
dependent and can strongly interact. This interaction of such eigenvectors with
different decay rates can cause large transient growth, so a more generalized
stability analysis is required for finite times. The transition to turbulence in
both Couette and plane or pipe Poiseuille flow provides a striking example for
which traditional modal analysis fails [38]. Farrell and Ioannou [7,8] have de-
veloped a rigorous and generalized stability theory for both autonomous and
non-autonomous operators. Implementation of this method to non-autonomous
systems with non-trivial time dependence, however, can be computationally pro-
hibitive.

1.1 Linear Stability Theory – Modal Approach

The equations governing the evolution of infinitesimal disturbances are obtained
by linearizing the relevant interface equations. Discretization of the linearized
system produces a set of equations that can be cast in operator form

dG

dt
= AG, (2)

where A(t) denotes the linearized disturbance operator and G(t) is a vector that
represents the state of the system at time t. The traditional approach to stability
proceeds by diagonalizing A(t) into a matrix whose diagonal elements contain
the rank ordered eigenvalues, which is equivalent to assuming an exponential
time dependence for G. If all the eigenvalues have non-positive real part, then
the flow is stable. If the real part of any eigenvalue is positive, the flow is un-
stable. The eigenvalue with largest, positive real part corresponds to the most
dangerous or fastest growing mode whose wavelength can be directly compared
with experiment. For normal operators, this procedure yields extremely accurate
predictions, as in the Bénard problem [2]. For highly non-normal operators, this
method can fail to predict instability altogether, as in the transition to turbu-
lence in bounded shear flows [35]. This failure is due to the fact that the matrix
used to diagonalize A(t) is not unitary and therefore cannot be ignored.

1.2 Generalized Linear Stability Theory

The general solution to (2) is given by

G(t) = Φ[t,t0]G(t0), (3)
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where the propagator or matricant Φ[t,t0], which maps the state of the system at
time t0 to its state at time t, obeys the semigroup property Φ[t,s]Φ[s,t0] = Φ[t,t0]
and satisfies the matrix differential equation [8]

dΦ[t,t0]

dt
= A(t)Φ[t,t0], Φ[t0,t0] = I. (4)

The matricant can be expressed as a multiplicative integral which is formally
defined as [13]

Φ[t,t0] =
∫̂ t

t0

[I + A(s)ds] ≡ lim
δt→0

n∏
j=1

[I + A(tj)δtj ] , (5)

with n δt = (t − t0). If the values of the matrix function A(t) commute, such
that [A(t1),A(t2)] = 0 ∀ t1, t2 ∈ (t0, t), then the propagator reduces to the
matrix

Φ[t,t0] = exp
[∫ t

t0

A(s)ds
]
. (6)

In general, however, (6) is not a solution to (4), as verified by differentiation [13].
For the case of autonomous operators, A is independent of t, and (6) reduces
further to

Φ[t,t0] = exp [A(t− t0)] . (7)

The amplification ratio, σ, of an arbitrary initial perturbation, G(t0) 	= 0,
over the time interval [t0, t] is given by

σ2 =
(G(t),G(t))

(G(t0),G(t0))
=

(
Φ[t,t0]G(t0),Φ[t,t0]G(t0)

)
(G(t0),G(t0))

=

(
Φ†

[t0,t]Φ[t,t0]G(t0),G(t0)
)

(G(t0),G(t0))
, (8)

where the inner product is computed in the Euclidean norm ‖ · ‖ = (·, ·)1/2 and
the adjoint linear operator, Φ†, is defined by (u,Φv) = (Φ†u,v) for vectors u
and v. It then follows that the maximum amplification of a disturbance during
the time interval [t0, t] is given by the square root of the maximum eigenvalue of
Φ†

[t0,t]Φ[t,t0]. The structure that undergoes maximum amplification is the corre-
sponding eigenvector of the composite operator [8].

The base states for thin films driven by a constant shear stress reduce to
traveling waves of constant speed. In the frame of reference defined by the trav-
eling wave, A is autonomous and the propagator Φ[t,0] reduces to the form (7).
Section 2 provides a rigorous formulation of the stability behavior and optimal
perturbations for thermocapillary driven spreading. By contrast, the spreading
of thin films driven by Marangoni stresses derived from a finite surfactant source
gives rise to base states whose shapes are space- and time-dependent. The oper-
ator A is therefore non-autonomous. Evaluation of (5) for time-dependent base
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states, which must be numerically determined, is computationally challenging.
The alternative but less-general approach described in Sect. 3, which reduces the
relevant system of equations to an initial value problem, nonetheless allows phys-
ical insight into the mechanisms promoting instability. Although this approach
prevents identification of so-called optimal perturbations, it offers the flexibility
of directly probing critical regions of the flow which are highly susceptible to
disturbances.

2 Autonomous Operator – Thermocapillary Spreading

Consider a thin incompressible Newtonian film spreading along a horizontal sub-
strate heated by a constant temperature gradient dT/dx. The liquid film is as-
sumed to be sufficiently thin that hydrostatic pressure is negligible. For small
Péclet and Biot numbers, the temperature of the air-liquid interface is identical
to the substrate thermal profile. Since the surface tension of a liquid decreases lin-
early (to a first approximation) with increasing temperature [1], the applied ther-
mal gradient produces a constant shear stress τ = dγ/dx = (dγ/dT ) · (dT/dx),
which drives liquid from warmer to cooler regions [25]. The stress singularity
that would otherwise occur at the moving contact line is removed [3] by use
of the Greenspan slip condition [16]. Other models can be used to relieve the
singularity in thermally driven films including a uniform precursor layer [21,22]
and a structured van der Waals film [4]. The Greenspan slip model has also been
applied to falling films [5].

There exists an inner region at the front of the spreading film of characteristic
length l = hc/(3Ca)1/3, which is obtained by balancing the capillary, thermo-
capillary and viscous forces controlling the flow [40]. The capillary number is
defined by Ca = µUc/γo, where µ is the liquid viscosity (assumed constant for
short migration distances), γo is the reference surface tension, and Uc ≡ hcτ/2µ
is the characteristic flow speed generated by thermocapillary forces. The quan-
tity hc denotes the characteristic film thickness far from the contact line which
can be determined from matching the film thickness to the outer region.

The dimensionless form of (1), extended to include slip at the moving contact
line, reduces to

ht −
(
h2)

χ
+∇ ·

[(
h3 + αh

)
∇∇2h

]
= 0, (9)

where α is the dimensionless slip coefficient, ∇ ≡ χ̂∂χ + ζ̂∂ζ , and subscripts
denote partial differentiation with respect to χ, ζ, or t. The stretched variables
in (9) are defined by χ = −x/l, ζ = y/l, h = h̃/hc, and t = t̃/(l/Uc). The term
(h2)χ arises from the applied thermocapillary stresses, and the term∇·(h3∇∇2h)
arises from the capillary pressure induced by surface curvature.

The spreading can be viewed from a reference frame moving at constant
speed vo where ξ = χ + vot. The position ξ = ξCL(ζ, t) denotes the location of
the contact line. For unperturbed flow, this (static) location is given by ξ = 0.
The boundary conditions used to solve the transformed equation

ht + vohξ −
(
h2)

ξ
+∇ ·

[(
h3 + αh

)
∇∇2h

]
= 0, (10)
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a b

Fig. 4. Numerical solution of a the dimensionless, steady state profile, ho(ξ), and b the
dispersion curves, β(q), obtained from a modal analysis

(where ∇ ≡ ξ̂∂ξ + ζ̂∂ζ) are h(ξ ≤ ξCL) = 0; hξ(ξ = ξCL) = C, which prescribes
the contact angle at the moving front; and h→ 1 and hξξξ → 0 as ξ → +∞. The
latter two constraints predicate a flat and constant film thickness in matching
to the other region.

2.1 Steady Traveling Wave Solutions

The third order equation governing the evolution of the steady base state
h(ξ, ζ, t) = ho(ξ) is found from integration of (10) to be

h0ξξξ =
ho − 1
h2

o + α
. (11)

The above boundary conditions determine that the wave speed is vo = 1 and
that the integration constant vanishes. Equation (11) is converted to a system of
first order equations which are solved using a standard shooting method for stiff
ODEs. Solutions for different values of the slip coefficient (0.001 < α < 0.10)
and contact slope (0.1 < C < 1.0) are shown in Fig. 4a. Smaller values of C have
only a small influence on the height profile and are not shown. The maximum
amplitude of the capillary ridge that develops behind the moving contact line
increases with decreasing slip or increasing contact slope.

2.2 Linear Stability of Traveling Waves

Profiles with large capillary ridges as shown in Fig. 4a can undergo sinusoidal
fingering instabilities with well defined (dimensionless) wavenumber q (scaled by
l) in the transverse direction (ζ̂). Substitution of perturbed waveforms h(ξ, ζ, t) =
ho(ξ) + εh1(ξ, ζ, t) with ε� 1 into (10), where

h1(ξ, ζ, t) = G(ξ, t) exp(iqζ), (12)
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yields the evolution equation for the streamwise disturbance function G(ξ, t):

∂G

∂t
=

[

2hoξ − (α+ 3h2
o)(2ho + α− h2

o)h0ξ

(h2
o + α)2

− αq4ho − q4h3
o − 6hoh0ξ(ho − 1)

h2
o + α

]

G

+
[

−1 + 2ho + 3q2h2
oh0ξ + αq2hoξ − (α+ 3h2

o)(ho − 1)
h2

o + α

]

Gξ

+
(
2αq2ho + 2q2h3

o

)
Gξξ +

(−αhoξ − 3h2
ohoξ

)
Gξξξ +

(−αho − h3
o

)
Gξξξξ . (13)

Note that the time dependence of G(ξ, t) is not assumed to have exponential
form. Equation (13) is solved subject to four boundary conditions [37]. Two
conditions demand that the disturbance decays upon approach to the outer
region, i.e. G(ξ → +∞) = 0 and Gξ(ξ → +∞) = 0. The third condition follows
from the combined Taylor expansions of h and hξ about ξ = ξCL:

h(ξCL) ≈ ho(0) + εG(0) + ξCLhoξ(0) and
hξ(ξCL) ≈ hoξ(0) + εGξ(0) + ξCLhoξξ(0), (14)

where terms of order εξCL are neglected. Combining these results with the
boundary conditions h(ξCL) = ho(0) = 0 and hξ(ξCL) = hoξ(0) = C yields
one boundary condition for the disturbance at ξ = 0:

hoξξG− CGξ = 0. (15)

The second condition at ξ = 0 is obtained by evaluating (13) at the contact line
(where ho = 0) and using (15):

Gt −
(
C + αq2hoξξ

)
G+ αCGξξξ = 0. (16)

2.3 Asymptotic Behavior

The asymptotic stability of a non-normal system in the limit t → ∞ is deter-
mined from the modal spectrum [7]. In this limit, solutions to (13) can be further
specified according to G(ξ, t) = H(ξ) exp(βt), where β denotes the disturbance
growth rate. The numerical solutions were obtained by discretizing (13) using
a central difference scheme and using a standard QR algorithm for calculating
the relevant eigenvalues and eigenfunctions. The dispersion curves, β(q), corre-
sponding to the four base state height profiles shown in Fig. 4a are plotted in
Fig. 4b. There exists a band of unstable wavenumbers in the range 0 < q ≤ 0.5
with maximum growth rate at qmax ≈ 0.35. The growth rate with α = 0.01
and C = 1.00 is nearly as large as that obtained with α = 0.001 and C = 0.10.
The value β(qmax) increases as the slip coefficient decreases or the contact slope
increases. This behavior confirms that the higher the capillary ridge, the more
unstable the flow.
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2.4 Optimal Amplification Ratio

Equation (13) can be represented in the form (2), where the autonomous ma-
trix A contains the elements obtained from the discretization of the linearized
equation. The matrix is real, square, banded, nondefective and non-normal. The
formal solution to (2) then reduces to the operator exponential acting on the
initial condition Go:

G(t) = exp(tA)Go. (17)

It follows that the maximum possible amplification over time t is given by

σmax(t) ≡ sup
Go �=0

‖G‖
‖Go‖

= ‖ exp(tA)‖. (18)

This result also follows from (8) where the greatest amplification of any initial
perturbation Go over time t is given by the square root of the maximum eigen-
value [7] of etA†

etA, namely [λmax(etA†
etA)]1/2 = ‖etA‖ . Any non-defective

matrix A can be decomposed according to the similarity transformation

A = SΛS−1, (19)

where S is the matrix whose columns are the normalized eigenvectors of A in
order of growth rate and Λ is the diagonal matrix of the associated eigenvalues
[15]. This identity can be used to establish bounds on ‖etA‖:

exp(λmaxt) ≤ ‖ exp(tA)‖ = ‖S exp(tΛ)S−1‖ ≤ ‖S‖‖S−1‖ exp(λmaxt), (20)

where λmax is the leading entry of Λ. For a normal operator A, S is unitary, and
both the lower and upper bounds on ‖ exp(tA)‖ equal exp(λmaxt) ∀ t. The eigen-
value with largest real part is therefore physically determinant since the growth
rate of any disturbance is bounded above by λmax, the spectral abscissa of A,
which forms the leading entry in Λ. For a non-normal operator, the eigenvectors
are not orthogonal and the norm of S and its inverse can be much larger than
unity. For highly non-normal systems, several orders of transient amplification
can induce nonlinear effects, thereby invalidating the results of modal analysis.
The transient behavior of solutions to (13) is therefore determined by examining
the time dependence of ‖ exp(tA)‖. The optimal initial condition that attains
the maximum amplification at time t is determined as part of the analysis, which
obviates the need to specify an initial form for the perturbation. In these studies,
the number of grid points used in discretizing A ranged from 1600 to 4500; the
matrix norms and exponentials were calculated with MATLAB 5.3 [30].

Figure 5 depicts the temporal evolution of ln ‖ exp(tA)‖ for selected wave-
numbers q. The curves represent the envelopes maximized over all initial con-
ditions of the amplification of individual initial conditions. Initially the system
experiences a very small level of transient amplification (small bump near t = 0)
followed by a brief plateau. By time t = 5, the curves with q 	= 0 rapidly approach
a straight line whose slope equals the eigenvalue predicted from modal analysis.
The insignificant level of transient amplification and the rapid convergence to the



88 J.M. Davis, B.J. Fischer, and S.M. Troian

a b

Fig. 5. Maximum possible amplification of disturbances within a time interval t for
the height profiles shown in Fig. 1. Parameter values are a α = 0.01, C = 1.0 and
b α = 0.001, C = 0.1

relevant eigenvalue explains the excellent agreement between experimental mea-
surements of the fingering wavelength and the predictions of the most unstable
wavelength from modal theory [21]. The ordering of the wavenumbers according
to the degree of amplification level is also identical to the predictions obtained
from the eigenspectrum of A. The small degree of transient amplification can be
traced to the rather small degree of non-normality of the governing operator, as
discussed in Sect. 2.5.

Short Time Behavior. The behavior of the disturbance growth rate in the
limit t→ 0 is found by expanding the matrix etA†

etA in (8) in a Taylor series:

lim
t→0

d
dt
‖etA‖ = λmax

(
(A + A†)

2

)
. (21)

Transient growth occurs when the maximum eigenvalue of the Hermitian part
of A is positive. The structure that experiences the most amplification at early
times [7] is the eigenvector associated with the maximum eigenvalue of (A +
A†)/2. Comparison between this eigenvalue and the slopes of the curves in Fig. 5
as t→ 0 provides a check on the numerical computations.

Long Time Behavior. Since exp(tA) = S exp(Λt)S−1, the maximum ampli-
fication in the limit t → ∞ is dominated exponentially by the first column of
S and the first row of S−1 with amplification factor exp[�e(λmax)t]. Schwartz’s
inequality reveals that the normalized initialcondition that produces the maxi-
mum growth over time t is the complex conjugate of the first row of S−1, namely
[(S−1)r1]†, or the first column of (S†)−1. Let SL denote the matrix whose rows
consist of the complex conjugates of the normalized left eigenvectors of A (the
eigenvectors of A†). By definition, SLS = I, so SL = S−1. This relationship im-
plies that the optimal initial condition that undergoes the most amplification as
t→∞ is the first row of S̄L (where the overbar denotes the complex conjugate),
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which is the leading eigenvector of A†. The spectral abscissa of A, denoted
by α(A), is equal to the growth abscissa, γ(A), also known as the Lyapunov
exponent [39]:

α(A) ≡ sup
z∈Λ(A)

�e(z) ≡ �e[λmax(A)] = γ(A) ≡ lim
t→∞ t−1 ln ‖etA‖. (22)

As shown in Fig. 5, this asymptotic limit is approached quite early in the spread-
ing process. Evaluation of the time for onset of fingering in various thermocap-
illary experiments indicates that this asymptotic limit is reached well before the
instability is observed [23].

2.5 Pseudospectra

An eigenvalue of a matrix A is a number z ∈ C such that zI −A is singular,
where I denotes the identity matrix. Determining the magnitude of the resolvent,
(zI − A)−1, for a range of z ∈ C provides useful information on the behavior
of A (and the operator of which it is the discrete representation) that cannot
be determined by merely computing the eigenvalues. For each ε ≥ 0, the ε-
pseudospectrum of A is defined as [39]

Λε(A) = {z ∈ C : ‖(zI−A)−1‖ ≥ ε−1}. (23)

If A is normal then Λε(A) is the union of discs formed by the set of points
in C within a distance ε of the spectrum of A, Λ(A). The ε-pseudospectrum
may be much larger if A is non-normal. Examination of plots of Λε(A) gives an
indication of the extent of non-normality of a matrix and thus of the physical
relevance of its eigenvalues.

The pseudospectra of an operator or matrix can also be used to calculate
bounds on ‖ exp(tA)‖. For each ε ≥ 0, the ε-pseudospectral abscissa of A is
defined by

αε(A) = sup
z∈Λε(A)

�e(z). (24)

A lower bound on the norm of the matrix exponential for ε > 0, derived from
the Laplace transform, is given by [39]

sup
t≥0
‖ exp(tA)‖ ≥ ε−1αε(A). (25)

This bound is relevant if the spectrum is confined to the left halfplane since a
lower bound on the transient growth can quickly be found by determining how
far the pseudospectra extend into the right halfplane. If the spectrum extends
into the right halfplane then this bound is not useful since the growth becomes
infinite as t→∞.

An analogue of the Cauchy integral formula in complex analysis, the Dunford-
Taylor integral, provides a representation of any analytic function f of an oper-
ator (or matrix) as the integral around an appropriate contour in the complex
plane [24]:

f(A) =
1

2πi

∫

Γ

(zI−A)−1f(z)dz, (26)
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a b

Fig. 6. Plots of the ε-pseudospectra for the base state with α = 0.001 and C = 0.1
for wavenumbers a q = 0.35 and b q = 0.60. The contours correspond to ε =
10−1, 10−1.25, ..., 10−3.5. The dotted vertical line separates the stable and unstable
halves of the complex plane

where Γ is any contour enclosing the spectrum of A. Choosing the contour to
be the boundary ∂Λε(A) of Λε(A) for some ε > 0 produces an upper bound for
the norm of the matrix exponential:

‖ exp(tA)‖ ≤ 1
2πε

∫

∂Λε(A)
exp[t �e(z)] |dz|. (27)

In practice, this bound is difficult to compute accurately.
Contours of the ε-pseudospectrum were calculated using the Pseudospectra

GUI [43] for MATLAB. Boundaries of the ε-pseudospectrum for wavenumbers
q = 0.35 and q = 0.60 for α = 0.001 and C = 0.1 are shown in Fig. 6 for a region
near the unstable half of the complex plane. The contours shown correspond to
values of ε = 10−1, 10−1.25,..., 10−3.5. The abscissa and ordinate denote �e(z)
and �m(z), respectively. The curves exhibit only mild non-normality since each
contour exceeds the spectrum of A by an amount only slightly larger than ε,
and the eigenvalue with largest real part appears robust. The non-modal ampli-
fication is primarily associated with the pairs of complex conjugate eigenvalues
near �e(λ) ≈ −0.5. The extent of non-normality is even less for larger values
of the slip coefficient, which is consistent with the plots of ln ‖ exp(tA)‖ vs. t
shown in Fig. 5. Although the magnitude of the contact slope (which affects
the height of the capillary ridge) influences the eigenvalues found from modal
analysis, it has a negligible effect on the level of transient amplification achieved
before the modal growth rate is established. Because the contours ε ≥ 10−1.5 for
q = 0.60 extend more than a distance ε beyond the leading eigenvalue and into
the unstable section of the complex plane, a small level of transient amplification
is expected for this asymptotically stable wavenumber. Applying (25) produces
a lower bound on amplification of approximately 1.7, while the actual maximum
attained amplification is 2.2, as shown in Fig. 5.
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2.6 Optimal Perturbations – SVD

The optimal initial perturbation and its corresponding evolved state at time t are
directly computed from the singular value decomposition of exp(tA) according
to [7]

exp(tA) = UΣV†, (28)

where the columns of the unitary matrix V represent the complete set of initial
states and the columns of the unitary matrix U are orthonormal basis vectors
that span the range space of final states. The elements, σi, of the diagonal ma-
trix Σ describe the growth realized by each initial state as it is transformed
by the propagator into the corresponding final state. Note that the singular
value decomposition must be calculated for each time at which U, Σ, and V
are sought. For an initial perturbation, Go =

∑
aiV i with (

∑
|ai|2)1/2 = 1,

applied at time t = 0, the corresponding evolved state at time t is G(t) =∑
aiσiU i = exp(tA)Go. The vectors V i are ordered by growth, and the opti-

mal perturbation, V opt(t), is the initial condition that undergoes the maximum
amplification during the interval t. This maximum amplification is denoted by
σmax ≡ ‖ exp(tA)‖ and is given by the leading entry in Σ.

The maximum possible amplification at any time is attained by the optimal
initial disturbance calculated for that time. The normalized evolved state, Uopt,
corresponding to V opt evolves into the leading eigenfunction of A, H(ξ), as
t→∞. The optimal initial disturbance, V opt(t→∞), in this long time limit (at
which the most unstable mode dominates) asymptotes to H†(ξ), the eigenvector
of the adjoint linearized operator, which is the initial condition that optimally
excites the most unstable mode, H(ξ).

The excitation for the most asymptotically unstable wavenumber, q = 0.35,
is plotted in Fig. 7. The disturbance applied at t = 0 that elicits the largest

a b

Fig. 7. a Optimal initial disturbance, V opt, and b the evolved state, σmaxUopt, after
time t for a disturbance of wavenumber q = 0.35 applied to the base state with α = 0.10
and C = 0.10. Each initial disturbance is normalized to unit magnitude. The magnitude
of the corresponding evolved state is equal to the amplification attained by the initial
disturbance at time t. The evolved state at t = 20 cannot be distinguished from the
leading eigenfunction, H(ξ)
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response at t = 1 is localized at the contact line. The initial disturbances that
undergo the most amplification at later times broaden to encompass much of
the capillary ridge but retain maxima at the contact line. Although initially
focused near the forward portion of the capillary ridge, the system’s response
to these perturbations broadens at later times to encompass more of the ridge.
By a dimensionless time t = 15, this response to the optimal disturbance is
nearly indistinguishable from the modal eigenfunction, which explains the excel-
lent agreement between the shape of the eigenfunction and the structure of the
experimentally observed instability shortly after onset [21].

2.7 Summary of Thermocapillary Spreading Problem

Because thermally driven liquid films have spatially dependent base states, the
linearized disturbance operator, A, is non-normal. The upper bound on distur-
bance amplification must therefore be determined from the norm of the matrix
exponential, ‖ exp(tA)‖, rather than from the eigenvalue of A with largest real
part, which determines the stability for all time only for normal operators. The
transient growth analysis yields several noteworthy results. The ranking of dis-
turbances of wavenumber q from largest to smallest level of disturbance ampli-
fication corresponds exactly to the asymptotic results from the modal theory.
There is a smooth, rapid transition from the non-modal behavior to the asymp-
totic results obtained from the eigenspectrum of A. The optimal disturbances
for both asymptotically stable and unstable flows initially exhibit a strong peak
at the contact line. Disturbances that induce instability rapidly broaden to en-
compass the entire capillary ridge and the corresponding evolved states rapidly
asymptote toward the requisite eigenfunction. The slip boundary condition gen-
erates less transient amplification than the use of boundary conditions which
predicate a flat [21] or van der Waals precursor film [4] ahead of the contact line,
even for very small values of the slip coefficient. This smaller transient growth
is caused by the fact that disturbances cannot extend beyond the contact line.
For the parameter values examined, the amplification of disturbances is there-
fore insufficient to trigger nonlinear effects, a conclusion which is reinforced by
examination of the pseudospectra of the linearized disturbance operator.

The modal predictions of the slip model and flat precursor film model agree
quantitatively if the slip coefficient is equal to the precursor film thickness for an
appropriate choice of the contact slope. The dispersion curves for the two models
overlap almost exactly for the unstable wavenumbers q ≤ 0.50. Disturbances
in a model employing a structured precursor film governed by van der Waals
forces [4] have a slightly smaller growth rate because of the stabilizing influence
of attractive van der Waals interactions. All three models predict an identical
wavelength for the most unstable disturbance.

The insignificant level of transient amplification and the insensitivity of the
asymptotic results to the specific characteristics of the precursor region, com-
bined with the mild non-normality of the linearized disturbance operator, ex-
plain the excellent agreement between theory and experiment [23]. Unlike the
linearized disturbance operator for plane Poiseuille flow, in which the angle be-
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tween the eigenfunctions decreases exponentially as the Reynolds number in-
creases [33], the angle between the eigenfunctions of the leading eigenvalues in
thermally driven films is relatively large (63o in the system studied). This is
likely due to the fact that the spatial inhomogeneity of the base state is confined
to the capillary ridge. As a result, surface tension, which plays such a critical
role in free surface flows, dampens the oscillatory, subdominant modes before
significant energy can be transferred to the leading eigenvector. Little transient
amplification occurs since the modes interact only weakly.

3 Non-autonomous Operator: Marangoni Spreading
from a Finite Surfactant Source

The reduction of (5) to (7) for autonomous operators, which allows straightfor-
ward computation of the singular value decomposition of ‖ exp(tA)‖, is no longer
valid for non-autonomous operators. For the Marangoni problem discussed be-
low, there is no reference frame in which the base states can be rendered time-
independent. As a result, the disturbance operator A is non-autonomous. While
the singular value decomposition of (5) can still be used to identify the complete
set of optimal perturbations ordered by the level of growth realized over a given
time interval, numerical implementation of this approach for non-autonomous
systems can be formidable, especially for large matrices. In addition, the long
time dynamics is not governed by the fastest growing mode but by the Lyapunov
vector growing at the mean rate of the first Lyapunov exponent [8]:

λ = lim sup
t→∞

t−1 ln(‖Φ(t)‖). (29)

This exponent is analogous to the spectral abscissa in autonomous systems,
where λ > 0 defines asymptotically unstable flow. Information about the associ-
ated Lyapunov vector is often much more difficult to obtain than the analogous
exercise for autonomous operators which simply reduces to computing the eigen-
values and eigenvectors of A.

Given these difficulties, the Marangoni problem is posed as an initial value
problem. Disturbances are applied to selected regions of the flow and their am-
plification ratio, which is normalized by the temporal behavior of the evolving
base state, is monitored in time. Despite this restriction to a limited set of initial
conditions, the system of equations is shown to exhibit large transient growth
as disturbances ahead of the spreading front convect past the leading edge. Al-
though all the disturbances investigated decay away as t → ∞, the substantial
amplification at intermediate times may signal the presence of convective insta-
bilities.

Even for normal operators, care must be taken in defining the stability cri-
terion for time-dependent base states. Shen [36] first introduced the concept of
“momentary stability” to describe the situation which prevails at a given in-
stant when the kinetic energy of disturbances diminishes at a faster rate than
the kinetic energy of the base state. Likewise, he designated a system “momen-
tarily unstable” if the kinetic energy contained in the disturbance diminishes at
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a slower rate than the kinetic energy of the base state. The ratio of the relative
energy of the disturbance, Ed(t), to that of the reference (base) state, Eb(t),
provides a convenient measure of disturbance growth at time t. Normalizing the
energy of the base states and disturbances by the corresponding values at some
reference time t0 leads to the amplification ratio

R =
[
Ed(t)
Ed(to)

]
/

[
Eb(t)
Eb(to)

]
, (30)

which surveys the intensification or dissipation of the relative input energy for
a given time interval. While this definition falls far short of providing the rele-
vant information contained in the first Lyapunov vector and exponent for non-
autonomous systems, investigation of the system’s response to selected distur-
bances help pinpoint the critical features of the spreading profile associated with
large transient growth.

3.1 Surfactant Driven Flow

Consider a thin incompressible Newtonian liquid film of constant viscosity µ
and initial height hc partially coated with an insoluble surfactant monolayer of
length Lc as shown in Fig. 8a. The initial gradient of the spreading pressure,Π =
γo − γm (see Fig. 8b), induces a shear stress τ = dγ/dx = (dγ/dΓ )(dΓ/dx) at
the air-liquid interface where Γ is the surface surfactant concentration. Because
surface tension is a decreasing function of surfactant concentration, the positive
shear stress drives surfactant and liquid toward regions of higher surface tension
(uncoated regions). For a finite monolayer source, the driving force Π/L(t),
where Π is constant, weakens as the monolayer spreads.

The surfactant monolayer is incorporated into the model through the stress
boundary condition and the accompanying equation of motion for the surface
concentration. This monolayer, however, is regarded as infinitesimally thin such
that its surface viscosity and density can be ignored. Furthermore, since the flow
is unbounded in the streamwise x-direction, it is assumed that the molecules
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a b

Fig. 8. The initial configuration for Marangoni spreading in rectilinear geometry. The
liquid layer has viscosity µ, density �, and initial uniform thickness hc. The initial
surfactant monolayer extends a distance Lc with surface tension γm and surface con-
centration Γm. The maximum spreading pressure is defined by Π = γo − γm, where
the surface tension of the uncoated film is γo



Linear Stability of Thin Spreading Films 95

comprising the monolayer behave as an ideal gas. The dimensionless equation of
state relating the surface tension to the molecular concentration is assumed to
be γ = 1− Γ . Non-linear equations of state have also been studied [9,14].

Within the lubrication approximation [6] and for vanishing Bond number
�ghc

2/γm, the dimensionless evolution equations for h and Γ become [20,29]

∂h

∂t
+∇ ·

(
−h

2

2
∇Γ +

C
3
h3∇3h

)
= 0 , (31a)

∂Γ

∂t
+∇ ·

(
−Γh∇Γ +

C
2
Γh2∇3h− 1

Pes
∇Γ
)

= 0 . (31b)

where the film height is normalized by the initial film thickness hc, the surfac-
tant concentration by the initial concentration Γm, and the streamwise (x) and
transverse (y) coordinates by the initial monolayer extent Lc. The dimensionless
group C = (hc/Lc)2γm/Π represents the ratio between the capillary force, which
prefers minimal surface area, and the spreading pressure, which is responsible for
the increase in surface area. This group can also be written as C = (hc/Lc)3/Ca
where Ca = µUc/γm is the usual capillary number scaled on the characteris-
tic speed, Uc = (hc/Lc)Π/µ, set by the Marangoni stresses. This characteristic
speed establishes the convective time scale Lc/Uc used to normalize the dimen-
sional time. The Péclet number Pes = UcLc/Ds = Πhc/µDs where Ds is the
surfactant diffusion coefficient along the surface, represents the ratio between
the convective surfactant flux and the diffusive flux. For large Péclet numbers,
the diffusive contribution is negligible and the last term in (31b) can be omitted
altogether. Returning to (31a), the second and third terms describe the liquid
flux contribution from Marangoni stresses and pressure gradients due to surface
curvature, respectively. Equation (31b) represents the convective-diffusive trans-
port of surfactant at the air-liquid interface. The second and third terms couple
the surfactant concentration to the surface velocity of the spreading film.

3.2 Base State Flow Profiles

In the absence of a constant shear stress, there is no reference frame that ren-
ders the spreading process time-independent. It is possible, however, to find a
self-similar solution in the limit of infinite capillary number (C → 0) and infinite
Péclet number. In this limit, only Marangoni stresses drive the flow. A straight-
forward scaling analysis for spreading in rectilinear geometry [20], as in Fig. 8a,
reveals that the leading edge of the monolayer advances in time as t1/3. The
slopes of the film thickness and concentration profiles, however, contain discon-
tinuities which create difficulties in formulating the linear stability analysis [27].
Inclusion of capillarity and surface diffusion destroys the exact self-similar na-
ture of the solutions; however, within the range of parameter values used in this
study, the asymptotic profiles approach self-similar form. It is therefore useful
to transform the original variables accordingly:

ξ =
x

t1/3 , go(ξ, t) = t1/3Γo(x, t) and ho(ξ, t) = Ho(x, t) . (32)
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The subscript “o” is used to denote the solutions corresponding to the base
or unperturbed states. The additional time dependence in the scaling for Γo

is dictated by the constraint that the total surfactant mass,
∫ L(t)
0 Γo(x, t)dx,

remain constant. The dimensionless equations describing the evolution of the
film height and surfactant concentration in a frame advancing as L(t) ∼ t1/3 are
given by

t
∂ho

∂t
=

1
3
ξhoξ +

1
2
(
h2

ogoξ

)
ξ
− C

3t1/3

(
h3

ohoξξξ

)
ξ
, (33a)

t
∂go

∂t
=

1
3
(ξgo)ξ +

(
gohogoξ

)
ξ
− C

2t1/3

(
goh

2
ohoξξξ

)
ξ
+
t1/3

Pes
goξξ . (33b)

The boundary conditions used to solve these equations correspond to symme-
try and no-flux of liquid and surfactant at the origin ξ = 0 and decay conditions
far downstream where the liquid layer is quiescent and free of surfactant:

hoξ(0, t) = 0 , hoξξξ(0, t) = 0 and goξ(0, t) = 0 , (34a)
ho(∞, t) = 1 , hoξ(∞, t) = 0 and go(∞, t) = 0 . (34b)

The initial conditions defined at t = 1 correspond to an initially flat liquid layer
coated with a surfactant monolayer whose concentration is relatively flat and
smoothly decays to zero near the point ξo. These two conditions are given by

h0(ξ, 1) = 1
go(ξ, 1) = go

max [1− tanh (A(ξ − ξo))] . (35)

This study was restricted to parameter values go
max = 0.5, A = 10, ξo = 0.5,

C = 10−5 and Pes = 5000. The initial surfactant distribution therefore has an
inflection point at ξo=0.5 and vanishes at about ξ = 0.75, as shown in Fig. 9b.
Equations (33a) and (33b) were solved using the method of lines [34], which
implements second-order centered differences for the spatial derivatives and a
fully implicit Gear’s method for the time integration [19]. The number of grid
points used in the computations varied between 301 and 751.

Figure 9 depicts the evolution of ho(ξ) and go(ξ) for times 1.0 ≤ t ≤ 5.0.
As the monolayer spreads along the liquid layer, it shears the underlying liquid
film, producing a sharp ridge at the advancing front. Unlike the thermocap-
illary problem discussed earlier, this ridge is mainly caused by the Marangoni
stress which pulls liquid from left to right causing severe thinning near the initial
perimeter of surfactant deposition and thickening at the moving front. Capillary
forces smooth points of extreme surface curvature, which exist at the apex and
thinned portions of the film profile. When capillary and diffusive forces are omit-
ted from the equations, the film thickness (and concentration profile) assumes
the shape of a linearly increasing (decreasing) ramp. Behind the apex of the
Marangoni ridge, there develops a distinctive linear segment in both ho and go

(indicative of the self-similar behavior) which expands in time. As time evolves,
ho(ξ) and go(ξ) approach self-similar forms since capillary and diffusive forces
weaken considerably with respect to the main driving force.
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a b

Fig. 9. Evolution of the base state a film thickness ho and b surfactant concentration
go with Pes = 5000 and C = 10−5 for times t = 1.0, 1.1, 1.5, 2.6 and 5.0

Surfactant Compression Effect. It is interesting to examine separately the
Marangoni and capillary contributions to the base state surface velocity profile
as shown in Fig. 10a for t = 2.6. The Marangoni stress causes a sharp increase in
the surface speed at the point where the moving film meets the quiescent layer.
This increase in speed gives rise to the increase in the film height at the advanc-
ing front. The surface tension, acting through the capillary pressure gradient,
opposes this motion, causing a negative surface velocity. The combined effect
smooths the sharpest features of the velocity profile and introduces a small cap-
illary oscillation just ahead of the monolayer decay point at ξ ≈ 1.5 to give an
overall negative flow speed in this region. This net negative contribution causes
a local accumulation of surfactant at the leading edge, which is more easily visu-
alized by examining the gradient in surfactant concentration shown in Fig. 10b.
The curve goξ decays monotonically away from ξ = 0 to reach a minimum at
ξ ≈ 0.75. The gradient plateaus in the region corresponding to the linear por-

a b

Fig. 10. a Marangoni and capillary contributions to the base state surface velocity
profile, along with their sum, at time t = 2.6 for Pes = 5000 and C = 10−5. The
surface velocity becomes negative just ahead of the step profile. b A comparison of goξ

at time t = 2.6 for Pes = 500, 5000 with C = 10−5. The concentration gradient goξ

undergoes a sharp change at ξ ≈ 1.5
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tions of ho(ξ) and go(ξ) and then sharply falls near the forward midpoint of
the Marangoni ridge finally vanishing where the monolayer ends. The local com-
pression of surfactant caused by the capillary pressure at the leading edge causes
an increase in the local stress. Decreasing the Péclet number from 5000 to 500,
which gives more prominence to surface diffusion, reduces the compression ef-
fect as shown in Fig. 10b. In physical systems, this compression effect is always
present if the spreading is dominated by Marangoni forces.

At t = 2.6, the shear stress is largest near ξ = 0.75 since this is the region
that suffers the most rapid change in surface tension as the spreading begins. A
similar effect occurs at the leading edge of the surfactant monolayer since the
local accumulation of surfactant causes a local enhancement in the concentration
gradient. It is expected that these two critical regions, which experience the
largest shear stress, are particularly vulnerable to disturbances. This issue is
discussed further in Sect. 3.3.

3.3 Linear Stability of Time Dependent Base State Profiles

The stability of infinitesimal disturbances to the film thickness and surfac-
tant concentration with sinusoidal variations in the transverse direction (ŷ)
are investigated next. The perturbed waveforms are defined by h(x, y, t) =
ho(x, t) + εH̃(x, y, t) and Γ (x, y, t) = Γ0(x, t) + εΓ̃ (x, y, t) (ε� 1), where

(H̃, Γ̃ )(x, y, t) = (Ψ,Φ)(x, t)eiqy . (36)

The dimensionless wavenumber q, normalized by Lc, is associated with the trans-
verse corrugations, which are denoted by a tilde. With this choice, disturbances
to the film height and surfactant concentration are applied in phase. Other
choices are possible. The Fourier amplitudes, Ψ and Φ, are further rescaled by
transforming to the moving reference frame of the base states as in (32):

Ψ(x, t) = ψ(ξ, t) and Φ(x, t) =
φ(ξ, t)
t1/3 . (37)

Substitution of these equations into (31a) and (31b) leads to the linearized set
of equations for the evolution of the disturbance film thickness, ψ(ξ, t), and the
disturbance concentration field, φ(ξ, t) [28]:

t
∂ψ

∂t
=

1
3
ξψξ +

1
2
(
ho

2φξ + 2hogoξψ
)
ξ
− (qt1/3)2

2
ho

2φ

− C
3t1/3

[(
ho

3ψξξξ + 3ho
2hoξξξψ

)
ξ

− (qt1/3)2
(
(ho

3)ξψξ + 2ho
3ψξξ

)
+ (qt1/3)4ho

3ψ
]
, (38a)

t
∂φ

∂t
=

1
3
(ξφ)ξ +

(
gogoξψ + hogoξφ+ hogoφξ

)
ξ
− (qt1/3)2hogoφ

− C
2t1/3

[(
goho

2ψξξξ + 2gohohoξξξψ + ho
2hoξξξφ

)
ξ
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Fig. 11. Three locations of the initial perturbations, ψ(t = 1) and φ(t = 1), relative
to the initial base state concentration profile go(t = 1)

− (qt1/3)
2 (

(goho
2)ξψξ + 2goho

2ψξξ

)
+ (qt1/3)

4
goho

2ψ
]

+
t1/3

Pes

[
φξξ − (qt1/3)

2
φ
]
. (38b)

Similar boundary conditions used for solving the base state equations are
applied to the disturbance equations, namely:

ψξ(0, t) = 0 , ψξξξ(0, t) = 0 , and φξ(0, t) = 0 , (39a)
ψ(∞, t) = 0 , ψξ(∞, t) = 0 , and φ(∞, t) = 0 . (39b)

The initial conditions chosen for this study represent highly localized Gaus-
sian functions that are positioned either well ahead of the initial monolayer front
(ξs = 2.0), at the base of the initial monolayer perimeter (ξs = 0.7), or at the
origin (ξs = 0.0). These disturbances are described by:

ψ(ξ, 1) = φ(ξ, 1) = e−B (ξ−ξs)2 . (40)

The amplitudes ψ(ξ, 1) and φ(ξ, 1) are set to unity since (38a) and (38b) are
linear equations. In this study, B = 50. Figure 11 shows three locations of the
Gaussian perturbations chosen for this study.

Equations (33a), (33b), (38a) and (38b) are solved simultaneously using the
method of lines as described earlier. Equations (33a) and (33b) are discretized
and cast into the operator form (2) by defining state vectors G = [ψ φ]. Since
there exists both an implicit and explicit time dependence in (38a) and (38b),
the linearized operator A is non-autonomous; the generalized stability analy-
sis described in Sect. 1.2 can therefore be invoked. An alternative, less general
approach is used below for computational expedience. Gaussian distributed per-
turbations in the film thickness and surfactant concentration are positioned at
key points in the spreading film. This targeted approach uncovers at least one
region of the flow which is particularly vulnerable to disturbance growth.
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3.4 Transient Growth Analysis

The amplification ratio defined by (30) requires specification of the quantity to be
used in monitoring the production and dissipation of energy. Previous studies of
centrifugal and thermocapillary spreading adopted the quantity, h2(x, t), which
is proportional to the kinetic energy associated with the dominant driving force
[21,22,37] (but not precisely equal to the kinetic energy). For Marangoni driven
spreading the flow speed is determined by the coupling of the film height to the
surfactant concentration gradient. The height averaged kinetic energy of the flow
per unit wavelength, λ = 2π/q, is given by:

Eb ≡
1
2λ

∫ λ

0

∫ ∞

0
|〈vo〉|2dξdy and Ed ≡

1
2λ

∫ λ

0

∫ ∞

0
|〈ṽ〉|2dξdy . (41)

where the subscripts b and d denote the base state and disturbance, respectively.
The magnitude of the base state velocity vector is given by |〈vo〉| and that of the
disturbance velocity field by |〈ṽ〉|, with height averaged quantities denoted by
angular brackets. The height-averaged base state velocity fields in the stream-
wise and transverse directions (the vertical component is negligible within the
lubrication approximation) are given by

〈uo〉 = − 1
2t2/3hogoξ +

C
3t
ho

2hoξξξ ,

〈wo〉 = 0 , (42)

respectively, while those of the averaged disturbance velocities are given by

〈ũ〉 =
[
− 1

2t2/3

(
hoφξ + goξψ

)
+
C
3t
ho

(
hoψξξξ + 2hoξξξψ − t2/3q2hoψξ

)]
eiqy ,

〈w̃〉 =
[
− 1

2t1/3 qhoφ+
C

3t2/3 qho
2
(
ψξξ − t2/3q2ψ

)]
ieiqy . (43)

3.5 Mechanism for Large Transient Growth

Depending on the initial location ξs of the applied disturbances, the system
undergoes different levels of amplification as shown in Fig. 12. When disturbances
are applied at the origin (well inside the monolayer), the amplification ratio R
rapidly decays from one to zero (Fig. 12a). The decay is more rapid for larger
wavenumbers. The shear stress near the origin is very small and flow is not
vulnerable to disturbance amplification.

For disturbances applied further downstream at ξs = 0.7, near the base of the
initial concentration decay point, the system undergoes a brief period of small
transient growth. Figure 12b shows that the smallest wavenumbers experience
the largest amplification. The mode with q = 0 achieves an overall amplification
ratio of about 25 and slowly decays toward zero as t → ∞. Despite this short
lived boost, disturbances with q 	= 0 dissipate their energy by t ≈ 1.5. Additional
studies of the rate of change R−1dR/dt has led to the following interpretation
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a b c

Fig. 12. Time evolution of the amplification ratio for a ξs = 0.0, b ξs = 0.7, and
c ξs = 2.0 with disturbance wavenumbers in the range 0 ≤ q ≤ 25 for Pes = 5000 and
C = 10−5

of the flow [9]. When a disturbance is first applied to the spreading film, the
system counteracts the disturbance flow by establishing Marangoni and capillary
pressure gradients in the transverse direction (ŷ) that drive liquid and surfactant
away from the disturbance to produce a momentary stabilizing response. The
system overshoots this response, however, giving rise to an enhanced streamwise
flow that produces the maximum in R shown for each curve. Eventually, the
Marangoni stresses die away and therefore so does the driving force for spreading.
In the limit t→∞ all disturbances decay to zero.

Significant amplification occurs when the initial disturbance is applied well
ahead of the initial monolayer at ξs=2.0 (see Fig. 12c). In this case, the base
state has sufficient time to develop a sizeable Marangoni ridge, which enhances
the mobility of the disturbance when the two meet. The amplification therefore
occurs at a later time in the spreading process (cf. Fig. 12b,c). Not only are the
amplification ratios almost an order of magnitude larger but the duration of the
enhanced response is also much longer. Because the speed of the advancing front
decays in time as dL/dt ∼ t−2/3, the disturbance has a longer residence time in
the vicinity of the Marangoni ridge than is the case with disturbances localized
further upstream. The mode with the largest overall R also switches from q = 0
to q = 10 with successively smaller enhancement for q = 5, 0 and 25 in that order.
There is an additional interesting difference between Figs. 12b and 12c. While
in Fig. 12b the small q modes attain their maximum amplification ratio at later
times than the large q disturbances, Fig. 12c shows that all the wavenumbers
resonate at approximately the same time.

A recent study has revealed that the location of applied disturbances has
a significant effect on which mode undergoes the strongest amplification [9] as
shown in Table 1. Specifically, the q = 0 mode undergoes the largest transient
growth when disturbances are localized at or behind the initial concentration
distribution. By contrast, disturbances placed farther downstream selectively
promote the q = 10 mode.
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Table 1. Wavenumbers yielding the largest amplification ratio for different disturbance
locations when Pes = 5000 and C = 10−5

ξs 0.0 0.7 1.0 1.5 1.7 2.0

qmax 0 0 0 10 10 10

3.6 Summary of Marangoni Driven Spreading

The disturbance functions, ψ(ξ, t) and φ(ξ, t), corresponding to q = 10 and
ξs = 2.0 are plotted in Fig. 13 for times t = 1.0, 2.6 and 8.0. In comparing
these curves to the base state profiles shown in Figs. 9 and 10b, it is evident
that the largest transient response occurs when the disturbances migrate to the
point where the concentration gradient undergoes the most rapid change (i.e.
the region of surfactant compression discussed earlier), which is also a region of
high curvature in film thickness. For the case shown, the maximum amplification
occurs at ξ = 1.5 for t = 2.6. A second region of large shear stress at ξ = 0.7 is
not as vulnerable to disturbances since R, ψ(ξ, t) and φ(ξ, t) rapidly decay for
t > 3.0 for ξs = 2.0. It is likely that these disturbances are stabilized by the much
slower base flow speed in this region. A comparison of Figs. 9a, 13a, and 10b
indicates that as the disturbance functions advect through the Marangoni ridge
into the linear portion of the height profile (where the concentration gradient is
constant), the amplification ratio approaches zero. Increasing the level of surface
diffusion by decreasing Pes leads to a substantial decrease in amplification. For
example, disturbances with q = 10 initially localized well ahead of the spreading
front suffer a reduction in the maximum value of R from approximately 230
to 15 as Pes is decreased from 5000 to 100. Values of Pes in experiments are
estimated to be closer to 5000.

a b

Fig. 13. Solutions for the disturbances in a film thickness, ψ, and b surfactant con-
centration, φ, for times ranging from 1.0 ≤ t ≤ 8.0 with q = 10 and ξs = 2.0. The
amplitude of the function ψ(ξ, t = 1) in a is too small to be visible
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Additional studies have shown that the decay rate of disturbances with q > 10
is even more rapid. For q = 25, the disturbance functions die away completely
before they are convected into the linear regions of the base state profiles. As
shown in Fig. 12c, disturbances with q = 0 also undergo significant amplification.
Interestingly, the functions ψ(ξ, t) and φ(ξ, t) assume shapes almost identical to
hoξ and goξ. This equivalence cannot be derived analytically from (38a) and
(38b). The equivalence between the disturbance eigenfunction G(ξ) and the first
spatial derivative of the base state hξ(ξ) can be derived analytically for the time-
independent equations governing gravitationally driven [40] or thermocapillary
driven films [21].

The analysis presented above, which reduces the original stability analysis of
a non-autonomous, non-normal system to a simpler initial value problem pre-
vents identification of the optimal perturbations. It nonetheless provides valuable
insight into possible mechanisms for instability. Because both the perturbations
and the base states evolve in time, however, the energy growth of perturbations
must be measured relative to that of the evolving base states. For a finite mono-
layer spreading over a thin liquid film, the analysis identifies the leading edge
of the spreading front, where hoξξ and goξξ are particularly large, as the region
most susceptible to disturbance amplification.

Table (1) indicates that disturbances with q = 10 undergo the largest am-
plification if placed ahead of the initial surfactant monolayer. This placement
allows development of a significant Marangoni ridge that amplifies disturbances
upon contact. This prediction of a selective wavenumber is encouraging because
it is one aspect of the instability that can be measured and compared with exper-
iment. Experimental evidence, however, has not demonstrated whether the ob-
served fingering patterns are an asymptotic instability or a nonlinear instability
triggered by nonlinear mechanisms. The fact that all the localized disturbances
investigated vanish as t→∞ predicts that the system is asymptotically stable.
This asymptotic decay, however, is likely due to the fact that in these studies,
the overall mass of surfactant contained in the source region is rather small.
Current studies [10,11] clearly show that surfactant distribution from a more
massive source than considered in Sect. 3.2 (modeled either as a large and fixed
concentration at the origin or as a time-dependent release) generates more pro-
nounced film thinning behind the advancing front with a consequent bottleneck
for surface transport. This bottleneck leads to rapid disturbance localization and
sufficient sustained amplification to produce asymptotic instability.

4 Conclusion

The presence of a deformable free surface in thin films driven to spread by body
or shear forces gives rise to base states that are spatially nonuniform. This non-
uniformity produces linearized disturbance operators that are non-normal and
an eigenspectrum that may not be physically determinant at finite times. In this
article, two examples of free surface shear flows are investigated, namely thermo-
capillary and Marangoni driven spreading. The first involves driving the coating
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flow with a constant shear stress that is induced by a streamwise linear tem-
perature profile. The second involves spreading driven by a non-constant shear
stress that is caused by an insoluble surfactant monolayer with non-uniform
distribution. The associated disturbance operator for the thermocapillary sys-
tem is autonomous but non-normal. This example is therefore used to demon-
strate a more generalized, rigorous non-modal approach to linear stability for
free surface flows. Calculations of the maximum disturbance amplification and
the pseudospectra for this system, however, reveal weak non-normality and tran-
sient growth such that the modal growth rate is rapidly recovered. Subdominant
modes contribute little energy to the leading eigenvector because their oscillatory
behavior is rapidly damped by surface tension. Generalization of these results
to numerous other lubrication flows involving surface tension and a constant
driving force may suggest similarly weak non-normality and transient growth.

The base states corresponding to a finite monolayer spreading on a thin vis-
cous film do not support constant traveling wave solutions. The film thickness
and concentration profiles are rather complex waveforms, each with distinctive
features that advance at different rates. Of particular interest are two regions
of the flow profile where the gradient in shear stress and film curvature is large
- namely, the region just ahead of the decay point of the initial surfactant dis-
tribution and a region at the leading edge of the spreading film where capillary
forces produce surfactant compression. The disturbance operator for this system
is non-autonomous and highly non-normal. Although the formalism for general-
ized linear stability outlined in Sect. 1.2 is applicable to non-autonomous oper-
ators, the disturbance propagator is difficult to compute accurately because the
evolving base states and disturbance functions must be numerically evaluated
in time. This universal approach to linear stability is therefore not applied to
the Marangoni spreading problem. The analysis is instead reduced to an initial
value problem to provide information about the physical mechanisms driving the
observed instability. Initial disturbances are localized to various positions along
the spreading profile to help determine the source of the transient disturbance
growth. Disturbances initially localized well ahead of the surfactant monolayer
undergo amplification by over two orders of magnitude (for the parameters used
in this study). This amplification is traced to the leading edge of the Marangoni
ridge where the second derivative of the surfactant concentration is particularly
large, as is the curvature of the liquid surface.

An interesting avenue for further investigation is the application of successive
excitations to the base states by sequential perturbations ahead of the advancing
front. Such perturbations could maintain a large disturbance amplification ratio,
increasing the potential for non-linear effects. A full nonlinear analysis of the
response to such initial perturbations would be needed to ascertain if these
effects can produce the requisite destabilization. Although the energy analysis
has isolated a region in the flow that is most susceptible to disturbances and an
associated preferred wavelength for large transient growth, direct comparison to
experiment remains elusive since it is difficult to excite infinitesimal disturbances
of specified shape. In contrast to thermocapillary spreading, little quantitative
experimental data exists for Marangoni spreading. Additional theoretical and
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experiment work is required to understand fully the intricate arterial patterns
observed experimentally.
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